Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Visual Question Answering on Remote Sensing Images, Sylvain Lobry, Universit´e de Paris, France

Автор: EO Data Science Lab (University of Stirling)

Загружено: 2025-11-23

Просмотров: 41

Описание:

Abstract: Remote sensing images contain a wealth of information which can be useful for a wide range of tasks including land cover classification, object counting or detection. However, most of the available methodologies are task-specific, thus inhibiting generic and easy access to the information contained in remote sensing data. As a consequence, accurate remote sensing product generation still requires expert knowledge. With Visual Question Answering for Remote Sensing (RSVQA), we propose a system to extract information from remote sensing data that is accessible to every user: we use questions formulated in natural language and use them to interact with the images. With the system, images can be queried to obtain high level information specific to the image content or relational dependencies between objects visible in the images. Using an automatic method, we built two datasets (using low and high resolution data) of image/question/answer triplets. The information required to build the questions and answers is queried from OpenStreetMap (OSM).

Bio: Sylvain Lobry is an assistant professor in Computer Science since 2020. He is a researcher at the SIP team of the LIPADE laboratory and teaches at UFR de Mathématiques et Informatique in Université Paris Cité. He obtained his PhD in image processing from Télécom Paris in 2017. His research interests are in the areas of methodological developments in image processing with applications in particular to remote sensing imagery. This includes high-resolution optical images processing using deep learning techniques and change detection, classification and regularization on multi-temporal series of SAR images using Markov Random Fields models. During his PhD, he was working on the SWOT mission, dedicated to the study of the world’s oceans and its terrestrial surface waters. Since 2019, he also works on the interactions between remote sensing data and natural language. In particular, he introduced the task of Visual Question Answering for Remote Sensing (RSVQA).

Visual Question Answering on Remote Sensing Images, Sylvain Lobry,  Universit´e de Paris, France

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

MIT 6.S191: Convolutional Neural Networks

MIT 6.S191: Convolutional Neural Networks

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

“The Mathematics of Percolation” by Prof Hugo Duminil-Copin (Fields Medallist) | 12 Jan 2024

“The Mathematics of Percolation” by Prof Hugo Duminil-Copin (Fields Medallist) | 12 Jan 2024

Tech Left Behind in S&P 500’s Latest Rebound | Bloomberg Tech 12/3/2025

Tech Left Behind in S&P 500’s Latest Rebound | Bloomberg Tech 12/3/2025

Oliver Pfäuti:

Oliver Pfäuti: "A Behavioral Heterogeneous Agent New Keynesian Model"

NASA ARSET: An Introduction to Synthetic Aperture Radar (SAR) and Its Applications, Part 1/3

NASA ARSET: An Introduction to Synthetic Aperture Radar (SAR) and Its Applications, Part 1/3

MIT Introduction to Deep Learning | 6.S191

MIT Introduction to Deep Learning | 6.S191

Запомните! Все болезни из за ЗАСТОЕВ в лимфе! Как разогнать лимфу? 5 убийц вашей лимфы. Е. Козлов

Запомните! Все болезни из за ЗАСТОЕВ в лимфе! Как разогнать лимфу? 5 убийц вашей лимфы. Е. Козлов

Florin Bilbiie:

Florin Bilbiie: "Aggregate-Demand Amplification of Supply Disruptions: The Entry-Exit Multiplier"

Surface Reconstruction

Surface Reconstruction

What Are Vision Language Models? How AI Sees & Understands Images

What Are Vision Language Models? How AI Sees & Understands Images

Stanford CS231N Deep Learning for Computer Vision | Spring 2025 | Lecture 1: Introduction

Stanford CS231N Deep Learning for Computer Vision | Spring 2025 | Lecture 1: Introduction

11. Introduction to Machine Learning

11. Introduction to Machine Learning

Lecture 1: Introduction to Machine Vision

Lecture 1: Introduction to Machine Vision

MIT 6.S191: Recurrent Neural Networks, Transformers, and Attention

MIT 6.S191: Recurrent Neural Networks, Transformers, and Attention

Complex-Valued Deep Learning for Synthetic Aperture Radar Applications, Reza Asiyabi, EdUni, UK

Complex-Valued Deep Learning for Synthetic Aperture Radar Applications, Reza Asiyabi, EdUni, UK

Stanford CS230 | Autumn 2025 | Lecture 1: Introduction to Deep Learning

Stanford CS230 | Autumn 2025 | Lecture 1: Introduction to Deep Learning

ML-Driven Time-Domain Strategy with Rubin, ZTF, and Roman

ML-Driven Time-Domain Strategy with Rubin, ZTF, and Roman

Что такое генеративный ИИ и как он работает? – Лекции Тьюринга с Миреллой Лапатой

Что такое генеративный ИИ и как он работает? – Лекции Тьюринга с Миреллой Лапатой

Why Computer Vision Is a Hard Problem for AI

Why Computer Vision Is a Hard Problem for AI

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]