Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Lecture Series in AI: “How Could Machines Reach Human-Level Intelligence?” by Yann LeCun

Columbia Engineering

Fu Foundation of Engineering and Applied Science

Columbia University

engineering school

lecture series in ai

artificial intelligence

technology

innovation

engineering

columbia engineering

jepa

Joint Embedding Predictive Architecture

Yann LeCun

Автор: Columbia Engineering

Загружено: 23 окт. 2024 г.

Просмотров: 75 943 просмотра

Описание:

ABOUT THE LECTURE
Animals and humans understand the physical world, have common sense, possess a persistent memory, can reason, and can plan complex sequences of subgoals and actions. These essential characteristics of intelligent behavior are still beyond the capabilities of today's most powerful AI architectures, such as Auto-Regressive LLMs.

I will present a cognitive architecture that may constitute a path towards human-level AI. The centerpiece of the architecture is a predictive world model that allows the system to predict the consequences of its actions. and to plan sequences of actions that that fulfill a set of objectives. The objectives may include guardrails that guarantee the system's controllability and safety. The world model employs a Joint Embedding Predictive Architecture (JEPA) trained with self-supervised learning, largely by observation.

The JEPA simultaneously learns an encoder, that extracts maximally-informative representations of the percepts, and a predictor that predicts the representation of the next percept from the representation of the current percept and an optional action variable.

We show that JEPAs trained on images and videos produce good representations for image and video understanding. We show that they can detect unphysical events in videos. Finally, we show that planning can be performed by searching for action sequences that produce predicted end state that match a given target state.

ABOUT THE SPEAKER
Yann LeCun, VP & Chief AI Scientist, Meta; Professor, NYU; ACM Turing Award Laureate

Yann LeCun is VP & Chief AI Scientist at Meta and a Professor at NYU. He was the founding Director of Meta-FAIR and of the NYU Center for Data Science. After a PhD from Sorbonne Université and research positions at AT&T and NEC, he joined NYU in 2003 and Meta in 2013. He received the 2018 ACM Turing Award for his work on AI. He is a member of the US National Academies and the French Académie des Sciences.

ABOUT THE COLUMBIA ENGINEERING LECTURE SERIES IN AI
Columbia Engineering's Lecture Series in AI explores the most cutting-edge topics in artificial intelligence and brings to campus thinkers and leaders who are shaping tomorrow’s technology landscape in a wide variety of fields. Join us to unravel the complexities and possibilities of AI in today's rapidly evolving world.

Lecture Series in AI: “How Could Machines Reach Human-Level Intelligence?” by Yann LeCun

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Yann LeCun

Yann LeCun "Mathematical Obstacles on the Way to Human-Level AI"

The mind behind Linux | Linus Torvalds | TED

The mind behind Linux | Linus Torvalds | TED

Harvard Professor Explains Algorithms in 5 Levels of Difficulty | WIRED

Harvard Professor Explains Algorithms in 5 Levels of Difficulty | WIRED

Why Can't AI Make Its Own Discoveries? — With Yann LeCun

Why Can't AI Make Its Own Discoveries? — With Yann LeCun

Why The World Relies On ASML For Machines That Print Chips

Why The World Relies On ASML For Machines That Print Chips

The Race to Harness Quantum Computing's Mind-Bending Power | The Future With Hannah Fry

The Race to Harness Quantum Computing's Mind-Bending Power | The Future With Hannah Fry

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Как я сделал вирусное видео с помощью Google VEO 3 — Новый уровень нейросетей! #veo3 #ai #sora #flow

Как я сделал вирусное видео с помощью Google VEO 3 — Новый уровень нейросетей! #veo3 #ai #sora #flow

How The Massive Power Draw Of Generative AI Is Overtaxing Our Grid

How The Massive Power Draw Of Generative AI Is Overtaxing Our Grid

Теория игр: жизнь, Вселенная и всё остальное [Veritasium]

Теория игр: жизнь, Вселенная и всё остальное [Veritasium]

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]