Building a Hybrid CNN-LSTM Model with PyTorch & Attention (Part 3)
Автор: The Gradient Ascent
Загружено: 2025-08-22
Просмотров: 369
In Part 3 of this series, learn how to build a Hybrid CNN-LSTM model with PyTorch and Attention for Structural Health Monitoring. We cover:
1. Implementing CNN + LSTM for time-series data
2. Adding a custom Attention mechanism
3. Handling tensor reshaping & forward pass
4. Final classification layer setup
5. Perfect for deep learning practitioners working with time-series problems.
Videos recommended to watch first before watching this one :
Data Cleaning : • Bridge Sensor Data : Initial Inspection an...
Time Based Feature Engineering : • Transforming Time-Series Data: From Raw Si...
🕒 Timestamps
0:00 – Introduction & Problem Justification → Structural health monitoring & weak feature correlations
1:00 – Model Implementation (models.py) & Reproducibility → Setting seeds for consistent results
3:30 – Custom Attention Module → Weighing importance of timesteps
5:15 – Hybrid Model Architecture (CNN + LSTM) → Combining local & long-term features
6:30 – Forward Pass & Data Flow → Tensor permutation & reshaping explained
7:00 – Attention Mechanism & Final Classification → Applying attention + fully connected layer
8:05 – Conclusion & Next Steps → Preparing for training script in Part 4
Model Architecture python script here :
https://github.com/arosha27/Structura...
#HybridCNN-LSTM #python #attention #deeplearning #structuralhealthmonitoring #timeseries #neuralnetworks #machinelearning #pytorch #dataanalysis #datascience #ai #cnn #lstm #tutorial #dataPermutation
#education
hybrid cnn lstm pytorch attention, deep learning structural health monitoring, time series neural network, pytorch attention mechanism tutorial, cnn lstm model implementation, deep learning for time series, pytorch deep learning tutorial, advanced neural network architectures
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: