Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

[MXML-3-04] Linear Regression [4/7] - Total Least Squares (TLS)

Автор: meanxai

Загружено: 2024-03-14

Просмотров: 478

Описание:

*** Dubbing: [ English ] [ 한국어 ]
In this video, we will look at the Total Least Squares, TLS. We will create an objective function for TLS and implement it in code.

In this video, we will look at the Total Least Squares, TLS in Chapter 2. Let's briefly compare OLS and TLS, and create an objective function for TLS. And we will implement TLS in code using the scipy library. Finally, let's train the Boston house price dataset, and predict the prices.

Let’s briefly compare the differences between OLS and TLS.

OLS assumes that there are no errors in the independent variable x and that there are errors only in the dependent variable y. So we simply measure the errors as the magnitude of y minus y_hat parallel to the y axis.

TLS assumes that there are errors in both the independent variable x and the dependent variable y. So, we measure the errors as the perpendicular distances of the data points to the regression line. The ordinary TLS assumes that all independent and dependent variables have the same level of uncorrelated Gaussian noise. TLS is a generalized form of least squares regression.

TLS is about finding the function that best fits the data points by minimizing the square sum of the perpendicular distances between data points and the regression line.

#LinearRegression #Regularization #TotalLeastSquare #TLS

[MXML-3-04] Linear Regression [4/7] - Total Least Squares (TLS)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

[MXML-3-05] Linear Regression [5/7] - Locally Weighted Regression (LWR)

[MXML-3-05] Linear Regression [5/7] - Locally Weighted Regression (LWR)

Gauss Newton - Non Linear Least Squares

Gauss Newton - Non Linear Least Squares

Image understanding: supervised learning: regression: total least-squares: line fitting, ax + by = 0

Image understanding: supervised learning: regression: total least-squares: line fitting, ax + by = 0

Что такое метод наименьших квадратов?

Что такое метод наименьших квадратов?

07 Logistic Regression Part II

07 Logistic Regression Part II

Computational Statistics

Computational Statistics

Accounting for measurement errors with total least squares

Accounting for measurement errors with total least squares

Introduction to mass spectrometry analysis

Introduction to mass spectrometry analysis

AMAT 199 Webinar | Deming Regression Models

AMAT 199 Webinar | Deming Regression Models

Orthogonal Regression

Orthogonal Regression

Least Squares Regression and the SVD

Least Squares Regression and the SVD

[MXML-2-01] Деревья решений [1/11] — Введение в деревья решений

[MXML-2-01] Деревья решений [1/11] — Введение в деревья решений

Компания Salesforce признала свою ошибку.

Компания Salesforce признала свою ошибку.

Я в опасности

Я в опасности

Image understanding: supervised learning: regression: total least-squares: line fitting

Image understanding: supervised learning: regression: total least-squares: line fitting

133 - Что такое функции потерь в машинном обучении?

133 - Что такое функции потерь в машинном обучении?

[MXML-1-01] K-Nearest Neighbors (KNN) [1/7] - The basics of KNN classification algorithm

[MXML-1-01] K-Nearest Neighbors (KNN) [1/7] - The basics of KNN classification algorithm

Linear Regression Using Least Squares Method - Line of Best Fit Equation

Linear Regression Using Least Squares Method - Line of Best Fit Equation

** Total Least Squares (TLS) with 5 variables: Matlab example [moved to new channel]

** Total Least Squares (TLS) with 5 variables: Matlab example [moved to new channel]

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com