Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Janosh Riebesell: Foundational Machine Learning Potentials - Challenges and Opportunities

Автор: FAIRmat and NOMAD

Загружено: 2024-07-30

Просмотров: 387

Описание:

On May 23, 2024, Janosh Riebesell gave the talk "Foundational Machine Learning Potentials - Challenges and Opportunities" in the FAIRmat seminar series in Berlin.

Find out more about: FAIRmat: https://www.fairmat-nfdi.eu/fairmat/

Abstract:
Graph neural network interatomic potentials have emerged as powerful tools for accelerating materials simulation and property prediction.

The latest generation of models approach about ab initio accuracy while maintaining linear scaling of compute cost with system size, promising high quality molecular dynamics at unprecedented time and length scales.

In this talk, he will discuss the development of CHGNet and MACE-MP, two models released in 2023, as well as the Matbench Discovery leaderboard which quantifies the utility of ML in guiding prospective materials discovery.

He will highlight some of the 35 use cases across various chemistry domains we subjected MACE-MP to (the current open SOTA on Matbench Discovery), pointing out what worked and what did not.

The focus will be on an issue that all current models appear to suffer from which we refer to as potential energy surface (PES) over-softening. Recent results indicate PES softening is due to inadequate training data.

He will conclude with highlighting efforts to generate new and better datasets specifically designed as universal ML potential training sets and what users can do to extract maximum performance from existing models on their tasks until models trained on these new datasets become available.

Janosh Riebesell: Foundational Machine Learning Potentials - Challenges and Opportunities

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Brian Pauw: Glimpses of the future: a

Brian Pauw: Glimpses of the future: a "full stack", highly automated materials reasearch laboratory

Learning Local Equivariant Representations for Large-Scale Atomistic Dynamics | Albert Musaelian

Learning Local Equivariant Representations for Large-Scale Atomistic Dynamics | Albert Musaelian

MMM Hub Software Spotlight: Machine Learning (ML) force fields

MMM Hub Software Spotlight: Machine Learning (ML) force fields

Orędzie noworoczne Prezydenta RP

Orędzie noworoczne Prezydenta RP

Sting - Shape of My Heart || Sylwester z Dwójką 2025

Sting - Shape of My Heart || Sylwester z Dwójką 2025

Gabor Csányi - Machine learning potentials: from polynomials to message passing networks

Gabor Csányi - Machine learning potentials: from polynomials to message passing networks

Sting - Every Breath You Take || Sylwester z Dwójką 2025

Sting - Every Breath You Take || Sylwester z Dwójką 2025

Kieron Burke: Electronic Structure Calculation: Past, Present, and Future

Kieron Burke: Electronic Structure Calculation: Past, Present, and Future

Advances in Machine Learned Potentials for Molecular Dynamics Simulation

Advances in Machine Learned Potentials for Molecular Dynamics Simulation

Winkler: Zachodu już nie ma. Mocne słowa o Europie

Winkler: Zachodu już nie ma. Mocne słowa o Europie

MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields

MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields

No Excuses. Top 5 skills you should get in 2026.

No Excuses. Top 5 skills you should get in 2026.

Janine George: Materials Design Using Chemical Heuristics, Workflows, and Machine Learning

Janine George: Materials Design Using Chemical Heuristics, Workflows, and Machine Learning

Sting - Message in the Bottle || Sylwester z Dwójką 2025

Sting - Message in the Bottle || Sylwester z Dwójką 2025

Lecture 7: Interatomic Potentials

Lecture 7: Interatomic Potentials

Zawieje i zamiecie śnieżne. Silny wiatr i lokalnie intensywne opady śniegu. Niż Tizian. Prognoza

Zawieje i zamiecie śnieżne. Silny wiatr i lokalnie intensywne opady śniegu. Niż Tizian. Prognoza

Active (Machine) Learning - Computerphile

Active (Machine) Learning - Computerphile

SANE2025 | Yoshiki Masuyama - Neural Fields for Spatial Audio Modeling

SANE2025 | Yoshiki Masuyama - Neural Fields for Spatial Audio Modeling

Machine learning potentials always extrapolate, it does not matter

Machine learning potentials always extrapolate, it does not matter

Félix Musil - Building machine learned force fields with kernel methods: a hands-on tutorial

Félix Musil - Building machine learned force fields with kernel methods: a hands-on tutorial

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]