Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

RecSys 2016: Paper Session 2 - Field Aware Factorization Machines for CTR Prediction

Автор: ACM RecSys

Загружено: 2017-03-30

Просмотров: 8844

Описание:

Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, Chih-Jen Lin
https://doi.org/10.1145/2959100.2959134
Click-through rate (CTR) prediction plays an important role in computational advertising. Models based on degree-2 polynomial mappings and factorization machines (FMs) are widely used for this task. Recently, a variant of FMs, field-aware factorization machines (FFMs), outperforms existing models in some world-wide CTR-prediction competitions. Based on our experiences in winning two of them, in this paper we establish FFMs as an effective method for classifying large sparse data including those from CTR prediction. First, we propose efficient implementations for training FFMs. Then we comprehensively analyze FFMs and compare this approach with competing models. Experiments show that FFMs are very useful for certain classification problems. Finally, we have released a package of FFMs for public use.

RecSys 2016: Paper Session 2 - Field Aware Factorization Machines for CTR Prediction

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

RecSys 2016: Paper Session 2 - Factorization Meets Item Embedding

RecSys 2016: Paper Session 2 - Factorization Meets Item Embedding

Florian Hartl | Large Scale CTR Prediction Lessons Learned

Florian Hartl | Large Scale CTR Prediction Lessons Learned

RecSys 2016: Tutorial on Lessons Learned from Building Real-life Recommender Systems

RecSys 2016: Tutorial on Lessons Learned from Building Real-life Recommender Systems

RecSys 2016: Paper Session 6 - Deep Neural Networks for YouTube Recommendations

RecSys 2016: Paper Session 6 - Deep Neural Networks for YouTube Recommendations

Factorization Machines 1: Introduction

Factorization Machines 1: Introduction

Serving a Billion Personalized News Feeds

Serving a Billion Personalized News Feeds

RecSys 2016: Paper Session 11 - Using Navigation to Improve Recommendations in Real-Time

RecSys 2016: Paper Session 11 - Using Navigation to Improve Recommendations in Real-Time

Wide & Deep Learning: Memorization + Generalization with TensorFlow (TensorFlow Dev Summit 2017)

Wide & Deep Learning: Memorization + Generalization with TensorFlow (TensorFlow Dev Summit 2017)

Доступное объяснение ROC и AUC!

Доступное объяснение ROC и AUC!

LSTM is dead. Long Live Transformers!

LSTM is dead. Long Live Transformers!

Deep Recommender Systems at Facebook feat. Carole-Jean Wu | Stanford MLSys Seminar Episode 24

Deep Recommender Systems at Facebook feat. Carole-Jean Wu | Stanford MLSys Seminar Episode 24

"Reinforcement Learning for Recommender Systems: A Case Study on Youtube," by Minmin Chen

COS 302: Applications of Matrix Factorization

COS 302: Applications of Matrix Factorization

RecSys 2020 Tutorial: Introduction to Bandits in Recommender Systems

RecSys 2020 Tutorial: Introduction to Bandits in Recommender Systems

RecSys 2020 Tutorial: Conversational Recommender Systems

RecSys 2020 Tutorial: Conversational Recommender Systems

Machine learning - Bayesian optimization and multi-armed bandits

Machine learning - Bayesian optimization and multi-armed bandits

dotAI 2017 - Olivier Grisel - Neural Networks for Recommender Systems

dotAI 2017 - Olivier Grisel - Neural Networks for Recommender Systems

How to Design and Build a Recommendation System Pipeline in Python (Jill Cates)

How to Design and Build a Recommendation System Pipeline in Python (Jill Cates)

Keynote Xavier Amatriain

Keynote Xavier Amatriain

Руководство для начинающих по анализу цепей Маркова Монте-Карло (MCMC) 2016

Руководство для начинающих по анализу цепей Маркова Монте-Карло (MCMC) 2016

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]