Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

RecSys 2016: Paper Session 6 - Deep Neural Networks for YouTube Recommendations

Автор: ACM RecSys

Загружено: 2017-03-30

Просмотров: 18801

Описание:

Paul Covington, Jay Adams, Emre Sargin
https://doi.org/10.1145/2959100.2959190
YouTube represents one of the largest scale and most sophisticated industrial recommendation systems in existence. In this paper, we describe the system at a high level and focus on the dramatic performance improvements brought by deep learning. The paper is split according to the classic two-stage information retrieval dichotomy: first, we detail a deep candidate generation model and then describe a separate deep ranking model. We also provide practical lessons and insights derived from designing, iterating and maintaining a massive recommendation system with enormous user-facing impact.

RecSys 2016: Paper Session 6 - Deep Neural Networks for YouTube Recommendations

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

RecSys 2016: Paper Session 6 - Optimizing Similar Item Recommendations

RecSys 2016: Paper Session 6 - Optimizing Similar Item Recommendations

RecSys 2021 Keynote: Graph Neural Networks for Knowledge Representation and Recommendation

RecSys 2021 Keynote: Graph Neural Networks for Knowledge Representation and Recommendation

How OpenxAI Cuts Cloud Costs with Decentralized Infrastructure

How OpenxAI Cuts Cloud Costs with Decentralized Infrastructure

RecSys 2016: Tutorial on Lessons Learned from Building Real-life Recommender Systems

RecSys 2016: Tutorial on Lessons Learned from Building Real-life Recommender Systems

Keynote Xavier Amatriain

Keynote Xavier Amatriain

Wide & Deep Learning: Memorization + Generalization with TensorFlow (TensorFlow Dev Summit 2017)

Wide & Deep Learning: Memorization + Generalization with TensorFlow (TensorFlow Dev Summit 2017)

Netflix's Recommendation Evolution by Mark Hsiao |  VideoRecSys 2023 Workshop | ACM RecSys

Netflix's Recommendation Evolution by Mark Hsiao | VideoRecSys 2023 Workshop | ACM RecSys

Recurrent Neural Networks for Session-based Recommendations - Alexandros Karatzoglou

Recurrent Neural Networks for Session-based Recommendations - Alexandros Karatzoglou

"Reinforcement Learning for Recommender Systems: A Case Study on Youtube," by Minmin Chen

Recommender System and It's Design | Machine Learning | Community Webinar

Recommender System and It's Design | Machine Learning | Community Webinar

Serving a Billion Personalized News Feeds

Serving a Billion Personalized News Feeds

RecSys 2020 Tutorial: Introduction to Bandits in Recommender Systems

RecSys 2020 Tutorial: Introduction to Bandits in Recommender Systems

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Deep Learning for Recommender Systems | Alexandros Karatzoglou

Deep Learning for Recommender Systems | Alexandros Karatzoglou

RecSys 2016: Paper Session 2 - Field Aware Factorization Machines for CTR Prediction

RecSys 2016: Paper Session 2 - Field Aware Factorization Machines for CTR Prediction

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Trends in Recommendation & Personalization at Netflix

Trends in Recommendation & Personalization at Netflix

Recommender Systems: Basics, Types, and Design Consideration | Machine Learning | Community Webinar

Recommender Systems: Basics, Types, and Design Consideration | Machine Learning | Community Webinar

Экспресс-курс RAG для начинающих

Экспресс-курс RAG для начинающих

Deep Recommender Systems at Facebook feat. Carole-Jean Wu | Stanford MLSys Seminar Episode 24

Deep Recommender Systems at Facebook feat. Carole-Jean Wu | Stanford MLSys Seminar Episode 24

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]