Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Computer chess with model predictive control and reinforcement learning

Автор: Dimitri Bertsekas

Загружено: 2025-01-29

Просмотров: 1659

Описание:

Paper and slides at
https://web.mit.edu/dimitrib/www/MPC_...
https://web.mit.edu/dimitrib/www/MPC-...
We apply model predictive control (MPC), rollout, and reinforcement learning (RL) methodologies to computer chess. We introduce a new architecture for move selection, within which available chess engines are used as components. One engine is used to provide position evaluations in an approximation in value space MPC/RL scheme, while a second engine is used as nominal opponent, to emulate or approximate the moves of the true opponent player.

We show that our architecture improves substantially the performance of the position evaluation engine. In other words our architecture provides an additional layer of intelligence, on top of the intelligence of the engines on which it is based. This is true for any engine, regardless of its strength: top engines such as Stockfish and Komodo Dragon (of varying strengths), as well as weaker engines.

Theoretically, our methodology relies on generic cost improvement properties and the superlinear convergence framework of Newton's method, which fundamentally underlies approximation in value space, and related MPC/RL and rollout/policy iteration schemes. A critical requirement of this framework is that the first lookahead step should be executed exactly. This fact has guided our architectural choices, and is apparently an important factor in improving the performance of even the best available chess engines.

Computer chess with model predictive control and reinforcement learning

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Learning with Less – Mark Squillante IBM, Ken Clarkson IBM, Yuhai Tu IBM, Soumyadip Ghosh, Tim Kling

Learning with Less – Mark Squillante IBM, Ken Clarkson IBM, Yuhai Tu IBM, Soumyadip Ghosh, Tim Kling

NIE OGLĄDAJ NETFLIXA O 3:00 W NOCY!

NIE OGLĄDAJ NETFLIXA O 3:00 W NOCY!

Reinforcement Learning, Model Predictive Control, and the Newton Step for Solving Bellman's Equation

Reinforcement Learning, Model Predictive Control, and the Newton Step for Solving Bellman's Equation

NMPC 2024 - Model Predictive Control & RL: A Unified Framework Based on Dynamic Programming

NMPC 2024 - Model Predictive Control & RL: A Unified Framework Based on Dynamic Programming

Reinforcement Learning Course at ASU

Reinforcement Learning Course at ASU

Plenary lecture at IFAC Nonlinear MPC, 2024; Model Predictive Control and Reinforcement Learning

Plenary lecture at IFAC Nonlinear MPC, 2024; Model Predictive Control and Reinforcement Learning

Thiết kế bộ điều khiển PID bằng ziegler-Nichols- kinh nghiệm thiết kế- hỏi bài cuối khóa- TS PPT

Thiết kế bộ điều khiển PID bằng ziegler-Nichols- kinh nghiệm thiết kế- hỏi bài cuối khóa- TS PPT

Я в опасности

Я в опасности

Lecture 12, 2025; Training of cost functions, approximation in policy space, policy gradient methods

Lecture 12, 2025; Training of cost functions, approximation in policy space, policy gradient methods

Bertsekas  - Dynamic Programming

Bertsekas - Dynamic Programming

New Directions in RL: TD(lambda), aggregation, seminorm projections, free-form sampling (from 2014)

New Directions in RL: TD(lambda), aggregation, seminorm projections, free-form sampling (from 2014)

MIT 14.02 Principles of Macroeconomics, Spring 2023

MIT 14.02 Principles of Macroeconomics, Spring 2023

Quantum Computing 101: Foundations, Frontiers, and Future Impact: Will Oliver

Quantum Computing 101: Foundations, Frontiers, and Future Impact: Will Oliver

Lecture 4, 2025, POMDP, Systems with Changing Parameters, Adaptive Control, Model Predictive Control

Lecture 4, 2025, POMDP, Systems with Changing Parameters, Adaptive Control, Model Predictive Control

Abstract Dynamic Programming,  Reinforcement Learning, Newton's Method, and Gradient Optimization

Abstract Dynamic Programming, Reinforcement Learning, Newton's Method, and Gradient Optimization

Lecture 1, 2024, course overview: RL and DP, AlphaZero, discrete and continuous applications

Lecture 1, 2024, course overview: RL and DP, AlphaZero, discrete and continuous applications

Lecture 8, 2025; GPT, HMM, and Markov chains: Rollout variants for most likely sequence generation

Lecture 8, 2025; GPT, HMM, and Markov chains: Rollout variants for most likely sequence generation

2025 MIT Integration Bee - Semifinals

2025 MIT Integration Bee - Semifinals

Lecture 12 2024; Off-line training with neural nets for approximate VI and PI. Aggregation

Lecture 12 2024; Off-line training with neural nets for approximate VI and PI. Aggregation

Lec 1 | MIT 18.01 Single Variable Calculus, Fall 2007

Lec 1 | MIT 18.01 Single Variable Calculus, Fall 2007

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com