Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Designing Next-Generation Numerical Methods with Physics-Informed Neural Networks

Автор: NHR@FAU

Загружено: 2022-02-15

Просмотров: 17251

Описание:

NHR PerfLab Seminar on February 15, 2022

Speaker: Stefano Markidis, KTH Royal Institute of Technology, Stockholm, Sweden

Title: Designing Next-Generation Numerical Methods with Physics-Informed Neural Networks

Slides: https://hpc.fau.de/files/2022/02/2022...

Abstract

Physics-Informed Neural Networks (PINNs) have recently emerged as a powerful and exciting tool for developing surrogate models, data assimilation and uncertainty quantification tasks, and solving ill-defined problems, e.g., problems without boundary conditions or a closure equation. An additional application of PINNs is the development of numerical solvers of Partial Differential Equations (PDEs) in an unsupervised fashion without using data from previous simulations. While the accuracy and performance of PINNs for solving PDEs directly are still relatively low compared to traditional numerical solvers, combining traditional methods and PINNs opens up the possibility of designing new hybrid numerical methods with improved performance. This talk introduces how PINNs work, emphasizing the relation between PINN components and main ideas with classical numerical methods, such as Finite Element Methods, Krylov solvers, and quasi-Monte-Carlo techniques. I then discuss opportunities for developing a new class of numerical methods combining classical and neural network solvers.


Speaker bio

Stefano Markidis is an associate professor and researcher in High-Performance Computing at KTH Royal Institute of Technology, Stockholm, Sweden. His research interest focuses on emerging computing paradigms and modeling. In his free time, he likes to watch football games and read American writers’ novels. He is a big fan of McCarthy, Fante, and Melville.

Designing Next-Generation Numerical Methods with Physics-Informed Neural Networks

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Neuromorphic Computing from the Computer Science Perspective – Algorithms and Applications

Neuromorphic Computing from the Computer Science Perspective – Algorithms and Applications

Физически-информированные нейронные сети (PINN) [Машинное обучение с учетом физики]

Физически-информированные нейронные сети (PINN) [Машинное обучение с учетом физики]

Finite Basis Physics-Informed Neural Networks (FBPINNs)||Scientific Machine Learning||April 29,2022

Finite Basis Physics-Informed Neural Networks (FBPINNs)||Scientific Machine Learning||April 29,2022

Нейронные ОДУ (НОДУ) [Машинное обучение с учетом физики]

Нейронные ОДУ (НОДУ) [Машинное обучение с учетом физики]

Physics-Informed Neural Networks (PINNs) - Conor Daly | Podcast #120

Physics-Informed Neural Networks (PINNs) - Conor Daly | Podcast #120

Data-driven model discovery:  Targeted use of deep neural networks for physics and engineering

Data-driven model discovery: Targeted use of deep neural networks for physics and engineering

DDPS |

DDPS | "When and why physics-informed neural networks fail to train" by Paris Perdikaris

Data-driven methods for science and engineering seminar

Data-driven methods for science and engineering seminar

Maziar Raissi:

Maziar Raissi: "Hidden Physics Models: Machine Learning of Non-Linear Partial Differential Equat..."

George Karniadakis - From PINNs to DeepOnets

George Karniadakis - From PINNs to DeepOnets

Physics-Informed Neural Networks (PINNs) - An Introduction - Ben Moseley | Jousef Murad

Physics-Informed Neural Networks (PINNs) - An Introduction - Ben Moseley | Jousef Murad

Неожиданная правда о 4 миллиардах лет эволюции [Veritasium]

Неожиданная правда о 4 миллиардах лет эволюции [Veritasium]

ЛЕКЦИЯ ПРО НАДЁЖНЫЕ ШИФРЫ НА КОНФЕРЕНЦИИ БАЗОВЫХ ШКОЛ РАН В ТРОИЦКЕ

ЛЕКЦИЯ ПРО НАДЁЖНЫЕ ШИФРЫ НА КОНФЕРЕНЦИИ БАЗОВЫХ ШКОЛ РАН В ТРОИЦКЕ

Нейронные сети на основе физики для механики жидкости

Нейронные сети на основе физики для механики жидкости

USNCCM17 Semi Plenary: Anima Anandkumar

USNCCM17 Semi Plenary: Anima Anandkumar

Physics Informed Neural Networks

Physics Informed Neural Networks

ETH Zürich DLSC: Physics-Informed Neural Networks - Applications

ETH Zürich DLSC: Physics-Informed Neural Networks - Applications

Intro to graph neural networks (ML Tech Talks)

Intro to graph neural networks (ML Tech Talks)

🧠 Scientific Machine Learning, FEM + ML, PINNs – Ehsan Haghighat | Podcast #79

🧠 Scientific Machine Learning, FEM + ML, PINNs – Ehsan Haghighat | Podcast #79

Матье Барро — Обучение на основе физических принципов: использование нейронных сетей для решения ...

Матье Барро — Обучение на основе физических принципов: использование нейронных сетей для решения ...

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com