Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

11. SciFM24 Animashree Anandkumar: Neural Operators: AI Accelerating Scientific Understanding

Автор: MICDE University of Michigan

Загружено: 2024-04-23

Просмотров: 898

Описание:

While language models have impressive capabilities of text understanding, they lack the physical understanding and grounding needed in scientific domains. For instance, language models could suggest new hypotheses, such as new molecules or designs, but they lack physical validity and the ability to simulate the processes internally. Hence, the proposed hypotheses still require physical experimentation for validation, which is the biggest bottleneck of scientific research. Numerical simulations offer an alternative to physical experiments, but traditional methods are too slow and infeasible for complex processes observed in many scientific domains. We propose AI-based simulation methods that are 4-5 orders of magnitude faster and cheaper than traditional simulations. They are based on Neural Operators that learn mappings between function spaces and have been successfully applied to weather forecasting, fluid dynamics, carbon capture and storage modeling, and optimized design of medical devices, yielding significant speedups and improvements.

11. SciFM24 Animashree Anandkumar: Neural Operators: AI Accelerating Scientific Understanding

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

06. SciFM24 M. Mahoney: Foundational Methods for Foundation Models for Scientific Machine Learning

06. SciFM24 M. Mahoney: Foundational Methods for Foundation Models for Scientific Machine Learning

Fourier Neural Operator (FNO) [Physics Informed Machine Learning]

Fourier Neural Operator (FNO) [Physics Informed Machine Learning]

EI 2023 Plenary 1: Neural Operators for Solving PDEs

EI 2023 Plenary 1: Neural Operators for Solving PDEs

Hassabis on an AI Shift Bigger Than Industrial Age

Hassabis on an AI Shift Bigger Than Industrial Age

DDPS | ML for Solving PDEs: Neural Operators on Function Spaces by Anima Anandkumar

DDPS | ML for Solving PDEs: Neural Operators on Function Spaces by Anima Anandkumar

Краткое объяснение больших языковых моделей

Краткое объяснение больших языковых моделей

03.  SciFM24 Arvind Ramanathan: Foundation Models for Enabling Rational Design of Biological Systems

03. SciFM24 Arvind Ramanathan: Foundation Models for Enabling Rational Design of Biological Systems

System Design Concepts Course and Interview Prep

System Design Concepts Course and Interview Prep

ЛЕКЦИЯ ПРО НАДЁЖНЫЕ ШИФРЫ НА КОНФЕРЕНЦИИ БАЗОВЫХ ШКОЛ РАН В ТРОИЦКЕ

ЛЕКЦИЯ ПРО НАДЁЖНЫЕ ШИФРЫ НА КОНФЕРЕНЦИИ БАЗОВЫХ ШКОЛ РАН В ТРОИЦКЕ

Anima Anandkumar - Neural operator: A new paradigm for learning PDEs

Anima Anandkumar - Neural operator: A new paradigm for learning PDEs

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Zongyi Li: Tutorial on Neural Operators (Tutorial 3)

Zongyi Li: Tutorial on Neural Operators (Tutorial 3)

Понимание GD&T

Понимание GD&T

Rethinking Physics Informed Neural Networks [NeurIPS'21]

Rethinking Physics Informed Neural Networks [NeurIPS'21]

Пайтон для начинающих - Изучите Пайтон за 1 час

Пайтон для начинающих - Изучите Пайтон за 1 час

The Man Behind Google's AI Machine | Demis Hassabis Interview

The Man Behind Google's AI Machine | Demis Hassabis Interview

Fourier Neural Operator for Parametric Partial Differential Equations (Paper Explained)

Fourier Neural Operator for Parametric Partial Differential Equations (Paper Explained)

IAIFI Colloquium: AI Accelerating Sciences: Neural operators for Learning Between Function Spaces

IAIFI Colloquium: AI Accelerating Sciences: Neural operators for Learning Between Function Spaces

Surya Ganguly (Stanford /Andreessen Horowitz): Theories of Creativity and Reasoning in Generative AI

Surya Ganguly (Stanford /Andreessen Horowitz): Theories of Creativity and Reasoning in Generative AI

Как LLM могут хранить факты | Глава 7, Глубокое обучение

Как LLM могут хранить факты | Глава 7, Глубокое обучение

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com