Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

DDPS | ML for Solving PDEs: Neural Operators on Function Spaces by Anima Anandkumar

Автор: Inside Livermore Lab

Загружено: 2023-05-08

Просмотров: 9142

Описание:

We will present exciting developments in the use of AI for scientific applications. This includes diverse domains such as weather and climate modeling, deep earth modeling, etc. We have developed principled approaches that enables zero-shot generalization beyond the training domain. This includes neural operators that yield 4-5 orders of magnitude speedups over numerical weather models and other scientific simulations. They learn mappings between function spaces that makes them ideal for capturing multi-scale processes.

Bio: Anima Anandkumar is a Bren Professor at Caltech and Director of ML Research at NVIDIA. She was previously a Principal Scientist at Amazon Web Services. She has received several honors such as Alfred. P. Sloan Fellowship, NSF Career Award, Young investigator awards from DoD, and Faculty Fellowships from Microsoft, Google, Facebook, and Adobe. She is part of the World Economic Forum's Expert Network. She is passionate about designing principled AI algorithms and applying them in interdisciplinary applications. Her research focus is on unsupervised AI, optimization, and tensor methods.

DDPS webinar: https://www.librom.net/ddps.html

💻 LLNL News: https://www.llnl.gov/news
📲 Instagram:   / livermore_lab  
🤳 Facebook:   / livermore.lab  
🐤 Twitter:   / livermore_lab  
🔔 Subscribe: / livermorelab

About LLNL: Lawrence Livermore National Laboratory has a mission of strengthening the United States’ security through development and application of world-class science and technology to: 1) enhance the nation’s defense, 2) reduce the global threat from terrorism and weapons of mass destruction, and 3) respond with vision, quality, integrity and technical excellence to scientific issues of national importance. Learn more about LLNL: https://www.llnl.gov/.

LLNL-VIDEO-848789

DDPS | ML for Solving PDEs: Neural Operators on Function Spaces by Anima Anandkumar

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

DDPS | ML-driven Models for Material Microstructure and Mechanical Behavior by Lori Graham Brady

DDPS | ML-driven Models for Material Microstructure and Mechanical Behavior by Lori Graham Brady

Anima Anandkumar - Neural operator: A new paradigm for learning PDEs

Anima Anandkumar - Neural operator: A new paradigm for learning PDEs

DDPS |

DDPS | "When and why physics-informed neural networks fail to train" by Paris Perdikaris

Fourier Neural Operator (FNO) [Physics Informed Machine Learning]

Fourier Neural Operator (FNO) [Physics Informed Machine Learning]

11. SciFM24 Animashree Anandkumar: Neural Operators: AI Accelerating Scientific Understanding

11. SciFM24 Animashree Anandkumar: Neural Operators: AI Accelerating Scientific Understanding

Physics-Informed AI Series | Scale-consistent Learning with Neural Operators

Physics-Informed AI Series | Scale-consistent Learning with Neural Operators

Operator Learning: From Theory to Practice

Operator Learning: From Theory to Practice

What If You Keep Slowing Down?

What If You Keep Slowing Down?

Самый важный алгоритм в машинном обучении

Самый важный алгоритм в машинном обучении

Пожалуй, главное заблуждение об электричестве [Veritasium]

Пожалуй, главное заблуждение об электричестве [Veritasium]

Zongyi Li's talk on solving PDEs from data

Zongyi Li's talk on solving PDEs from data

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Fourier Neural Operator for Parametric Partial Differential Equations (Paper Explained)

Fourier Neural Operator for Parametric Partial Differential Equations (Paper Explained)

Miles Cranmer - The Next Great Scientific Theory is Hiding Inside a Neural Network (April 3, 2024)

Miles Cranmer - The Next Great Scientific Theory is Hiding Inside a Neural Network (April 3, 2024)

Глубокие операторские сети (DeepONet) [Машинное обучение с учетом физики]

Глубокие операторские сети (DeepONet) [Машинное обучение с учетом физики]

DDPS | Defining Foundation Models for Computational Science: Toward Clarity and Rigor

DDPS | Defining Foundation Models for Computational Science: Toward Clarity and Rigor

Нейронные сети на основе физики для механики жидкости

Нейронные сети на основе физики для механики жидкости

Physics Informed Machine Learning: High Level Overview of AI and ML in Science and Engineering

Physics Informed Machine Learning: High Level Overview of AI and ML in Science and Engineering

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Нейронные ОДУ (НОДУ) [Машинное обучение с учетом физики]

Нейронные ОДУ (НОДУ) [Машинное обучение с учетом физики]

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com