Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Foundations of causal inference and its impacts on machine learning webinar

Автор: Microsoft Research

Загружено: 2021-03-29

Просмотров: 27469

Описание:

Many key data science tasks are about decision-making. They require understanding the causes of an event and how to take action to improve future outcomes. Machine learning (ML) models rely on correlational patterns to predict the answer to a question but often fail at these decision-making tasks, as the very decisions and actions they drive change the patterns they rely on. Causal inference methods, in contrast, are designed to rely on patterns generated by stable and robust causal mechanisms, even as decisions and actions change. With insights gained from causal methods, the new, growing field of causal machine learning promises to address fundamental ML challenges in generalizability, interpretability, bias, and privacy.

In this webinar, join Microsoft researchers Amit Sharma and Emre Kıcıman to learn about the fundamentals of causal inference. You will learn how a target question of cause and effect can be captured in a formal graphical model and answered systematically using available data. The researchers will introduce a four-step causal modeling framework for analyzing decision-making tasks and walk-through code examples using the DoWhy Python library that implements the framework. You will also discover how causal methods can be useful to improve ML models in terms of their generalizability, explainability, fairness, and robustness.

Together, you’ll explore:

■ Why causal reasoning is necessary for decision-making
■ The difference between a prediction and a decision-making task
■ How the DoWhy library can help you conduct a robust causal inference analysis by translating domain knowledge to a causal graph and validating the graph using available data
■ The connections between causal inference and the challenges of modern ML models

Amit Sharma is a Senior Researcher at Microsoft Research India. His work bridges causal inference techniques with data mining and machine learning, with the goal of making machine learning models generalize better, be explainable and avoid hidden biases. To this end, Amit has co-led the development of the open-source Microsoft DoWhy library for causal inference and DiCE library for counterfactual explanations.

Emre Kiciman is a Senior Principal Researcher at Microsoft Research at Redmond. His research is motivated by decision-making tasks in a variety of societally critical domains and includes research on causal machine learning and the security of AI systems. Emre is a co-author of the DoWhy library for causal inference.

𝗥𝗲𝘀𝗼𝘂𝗿𝗰𝗲 𝗹𝗶𝘀𝘁:

■ Foundations of causal inference and its impacts on machine learning (presentation slides)
■ DoWhy: Causal Reasoning for Designing and Evaluating Interventions (project page) https://www.microsoft.com/en-us/resea...
■ Causal Reasoning: Fundamentals and Machine Learning Applications (book excerpt): http://causalinference.gitlab.io/
■ Causality and Machine Learning at Microsoft (publications): https://www.microsoft.com/en-us/resea...
■ DoWhy: A library for causal inference (GitHub) https://github.com/Microsoft/dowhy
■ DoWhy: An end-to-end library for causal inference (paper): https://arxiv.org/abs/2011.04216
■ DoWhy – A library for causal inference (blog) - https://www.microsoft.com/en-us/resea...

*This on-demand webinar features a previously recorded Q&A session and open captioning.

This webinar originally aired on December 3, 2020

Explore more Microsoft Research webinars: https://aka.ms/msrwebinars

Foundations of causal inference and its impacts on machine learning webinar

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Хадзиме Такеда — Введение в причинно-следственный анализ с использованием машинного обучения | Sc...

Хадзиме Такеда — Введение в причинно-следственный анализ с использованием машинного обучения | Sc...

Demo: Enabling end-to-end causal inference at scale

Demo: Enabling end-to-end causal inference at scale

Morning Winter Jazz ~ Happy Jazz Cafe Music & Exquisite Bossa Nova Piano for Stress Relief

Morning Winter Jazz ~ Happy Jazz Cafe Music & Exquisite Bossa Nova Piano for Stress Relief

Research talk: Challenges and opportunities in causal machine learning

Research talk: Challenges and opportunities in causal machine learning

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Avatars: Finding a sense of self and others in the virtual world

Avatars: Finding a sense of self and others in the virtual world

An introduction to Causal Inference with Python – making accurate estimates of cause and effect from

An introduction to Causal Inference with Python – making accurate estimates of cause and effect from

Music for Work — Limitless Productivity Radio

Music for Work — Limitless Productivity Radio

14. Causal Inference, Part 1

14. Causal Inference, Part 1

Anaximander: Interactive Orchestration and Evaluation of Geospatial Foundation Models

Anaximander: Interactive Orchestration and Evaluation of Geospatial Foundation Models

System Design Concepts Course and Interview Prep

System Design Concepts Course and Interview Prep

Причинно-следственная связь - ОБЪЯСНЕНА!

Причинно-следственная связь - ОБЪЯСНЕНА!

[2026] Feeling Good Mix - English Deep House, Vocal House, Nu Disco | Emotional / Intimate Mood

[2026] Feeling Good Mix - English Deep House, Vocal House, Nu Disco | Emotional / Intimate Mood

What is causal inference, and why should data scientists know? by Ludvig Hult

What is causal inference, and why should data scientists know? by Ludvig Hult

Keynote: The Mathematics of Causal Inference: with Reflections on Machine Learning

Keynote: The Mathematics of Causal Inference: with Reflections on Machine Learning

Regression and Matching | Causal Inference in Data Science Part 1

Regression and Matching | Causal Inference in Data Science Part 1

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Update on Microsoft causal open-source libraries | Community Workshop on Microsoft's Causal Tools

Update on Microsoft causal open-source libraries | Community Workshop on Microsoft's Causal Tools

Причинно-следственные выводы с помощью машинного обучения — ОБЪЯСНЕНЫ!

Причинно-следственные выводы с помощью машинного обучения — ОБЪЯСНЕНЫ!

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com