Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

The Julia Programming Language in 2020 (for Data Science)

Автор: RichardOnData

Загружено: 2020-01-25

Просмотров: 33266

Описание:

Subscribe to RichardOnData here:    / @richardondata  

See my follow-up video on top Julia packages here:    • 10 Julia Packages You Should Learn for Dat...  

Learn more about Julia's speed here (credit to Sayan Sinha over at HackerNoon): https://hackernoon.com/performance-an...

In this video I discuss the Julia programming language, as it stands in 2020, with a focus on data science as it compares to the tried and true juggernauts R and Python. Julia was developed in 2012 by Alan Edelman, Jeff Bezanson, Stefan Karpinski, Deepak Vinchhi, Keno Fischer, and Viral Shah. They brought together some brilliant mathematical minds with focuses on combining the ease of use, utility, and syntax of Python with the performance of C. It is open-source with many packages developed for data science.

From a computational standpoint, Julia is built for multiple dispatch, enables asynchronous I/O, and it's compiled rather than interpreted. These are all benefits that enable flexibility and high performance.
Julia is very quick and easy to learn, in much the same way Python is.
From a runtime perspective, Julia runs faster than Python. This was demonstrated by the Julia Lab themselves; however third parties back this up with larger experiments.
There is one current caveat with speed called the "time to first plot" problem, but it is being worked on by developers.
The DataFrames.jl package helps it work great for data wrangling & manipulation.
For visualization you have many options for like Plots.jl, Gadfly.jl, and VegaLite.jl. I don't like any of these as much as ggplot2 in R but they get the job done.
No answer to RShiny yet.
The IDEs are Juno, or you can download iJulia to interface with Jupyter Notebooks.
Many options for statistical modeling and machine learning, including the ScikitLearn.jl interpretation (or use PyCall to directly use it from Python). StatsModels.jl, MultivariateStats.jl, and Distributions.jl are some examples of statistical packages.
A full deep learning framework through Flux.jl is available.

Overall, it is difficult for Julia to compete with some of R and Python's capabilities, but you have to remember that speed and runtime is of the essence, and we live in an era of very big data. Microseconds can make a big difference and Julia may be able to deal with enormous data in a way that is simply not practical for R or Python. For this reason I think it could be a huge player in 3-5 years time given some maturity and development of its user community.

#JuliaForDataScience #DataScience #JuliaProgramming

PayPal: richardondata@gmail.com
Patreon:   / richardondata  
BTC: 3LM5d1vibhp1F7pcxAFX8Ys1DM6XLUoNVL
ETH: 0x3CfC599C4c1040963B644780a0E62d45999bE9D8
LTC: MH8yPjvSmKvpmRRmufofjRB9hnRAFHfx32

The Julia Programming Language in 2020 (for Data Science)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

10 Julia Packages You Should Learn for Data Science (in 2020)

10 Julia Packages You Should Learn for Data Science (in 2020)

R or Python: Which Should You Learn?

R or Python: Which Should You Learn?

Что я реально делаю как Data Scientist в США за $410.000/год

Что я реально делаю как Data Scientist в США за $410.000/год

Исследовательский анализ данных с помощью Pandas Python

Исследовательский анализ данных с помощью Pandas Python

Intro to Julia Programming Language with Detroit Tech Watch

Intro to Julia Programming Language with Detroit Tech Watch

A Study Pathway for Data Science in 2020 (7 Steps)

A Study Pathway for Data Science in 2020 (7 Steps)

Why Is It SO HARD to Get a Data Science Job?

Why Is It SO HARD to Get a Data Science Job?

ИИ - ЭТО ИЛЛЮЗИЯ ИНТЕЛЛЕКТА. Но что он такое и почему совершил революцию?

ИИ - ЭТО ИЛЛЮЗИЯ ИНТЕЛЛЕКТА. Но что он такое и почему совершил революцию?

Introduction to metaprogramming in Julia | Workshop | JuliaCon 2021

Introduction to metaprogramming in Julia | Workshop | JuliaCon 2021

Rust, Julia, and Go: Disruptive New Programming Languages Changing the Face of Computing

Rust, Julia, and Go: Disruptive New Programming Languages Changing the Face of Computing

РЕАЛЬНОЕ собеседование на Data Scientist. Алгоритмы + Python

РЕАЛЬНОЕ собеседование на Data Scientist. Алгоритмы + Python

Classification Metrics Explained | Sensitivity, Precision, AUROC, & More

Classification Metrics Explained | Sensitivity, Precision, AUROC, & More

R or Python: Which Should You Learn in 2024?

R or Python: Which Should You Learn in 2024?

Интервью с соучредителями Julia Language

Интервью с соучредителями Julia Language

David Higgins - Introduction to Julia for Python Developers

David Higgins - Introduction to Julia for Python Developers

Lecture 36: Alan Edelman and Julia Language

Lecture 36: Alan Edelman and Julia Language

Julia Tutorial | Julia Data Science Basic Full Course [Complete Tutorial] for Beginners [2019]

Julia Tutorial | Julia Data Science Basic Full Course [Complete Tutorial] for Beginners [2019]

Intro to Julia for data science

Intro to Julia for data science

How to learn Julia, a new programming language

How to learn Julia, a new programming language

Stefan Karpinski (Keynote): Julia for Data Analysis and Beyond

Stefan Karpinski (Keynote): Julia for Data Analysis and Beyond

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com