Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Mary Scott - Supervised and Unsupervised approaches for Electron Microscopy Data Analysis

Автор: Institute for Pure & Applied Mathematics (IPAM)

Загружено: 2022-12-01

Просмотров: 693

Описание:

Recorded 01 December 2022. Mary Scott of the University of California, Berkeley, presents "Supervised and Unsupervised approaches for Electron Microscopy Data Analysis" at IPAM's Multi-Modal Imaging with Deep Learning and Modeling Workshop.
Abstract: Recently, materials science has undergone a data science revolution. With the increasing application of advanced computational methods for analysis of experimental data streams, the development of advanced algorithms for data distillation is an important theme in modern materials science research. Electron microscopy is the characterization method of choice to observe the atomic-scale and microstructural local features within materials that play a critical role in material performance. With resolution that can be deeply sub-Angstrom, a single image from a high-resolution electron microscope can measure atomic positions, defects, and strain. Furthermore, advances in high frame rate electron detection generate datasets consisting of millions of diffraction patterns- an approach that enables multimodal analysis from the same dataset to create maps of crystal orientation, strain, and more.
The increasing ability to perform high throughput electron microscopy has created opportunity for large scale nanomaterial studies alongside a need for robust, automated analysis. Advances in machine learning and computer vision have made high accuracy automated image interpretation possible. While widely applied to natural images, this approach is only recently being applied to atomic resolution electron microscopy images. Therefore, it is desirable to establish how to best implement machine learning approaches for scientific imaging data analysis. When combined with existing automatic image acquisition protocols, machine learning is now a viable option to close the materials design loop and incorporate electron microscopy into high-throughput materials design and synthesis.
Learn more online at: http://www.ipam.ucla.edu/programs/wor...

Mary Scott - Supervised and Unsupervised approaches for Electron Microscopy Data Analysis

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Elizaveta Rebrova - Low-rank tensor recovery from memory-efficient measurements - IPAM at UCLA

Elizaveta Rebrova - Low-rank tensor recovery from memory-efficient measurements - IPAM at UCLA

Atomic Resolution Imaging by Electron Ptychography - David Muller

Atomic Resolution Imaging by Electron Ptychography - David Muller

NUANCE Workshop on 4D STEM: Fundamentals of Electron Diffraction and 4D STEM

NUANCE Workshop on 4D STEM: Fundamentals of Electron Diffraction and 4D STEM

Jamie Haddock - Hierarchical and neural nonnegative tensor factorizations - IPAM at UCLA

Jamie Haddock - Hierarchical and neural nonnegative tensor factorizations - IPAM at UCLA

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

ЛЕКЦИЯ ПРО НАДЁЖНЫЕ ШИФРЫ НА КОНФЕРЕНЦИИ БАЗОВЫХ ШКОЛ РАН В ТРОИЦКЕ

ЛЕКЦИЯ ПРО НАДЁЖНЫЕ ШИФРЫ НА КОНФЕРЕНЦИИ БАЗОВЫХ ШКОЛ РАН В ТРОИЦКЕ

Гренландия: остров китов, нищеты и алкоголизма | Интервью с местными, снег, лед и хаски

Гренландия: остров китов, нищеты и алкоголизма | Интервью с местными, снег, лед и хаски

Tissue Preparation for Electron Microscopy

Tissue Preparation for Electron Microscopy

Introduction to the Scanning Electron Microscope (SEM)

Introduction to the Scanning Electron Microscope (SEM)

Maxim Ziatdinov - From Human-Centric to AI-Driven Experimentation Workflows for Materials

Maxim Ziatdinov - From Human-Centric to AI-Driven Experimentation Workflows for Materials

What If You Keep Slowing Down?

What If You Keep Slowing Down?

Multidimensional Electron Microscopy in the STEM: Scanning Diffraction and EELS Workshop

Multidimensional Electron Microscopy in the STEM: Scanning Diffraction and EELS Workshop

Di Fang - Mathematical Analysis of Many-Body Quantum Simulation with Coulomb Potentials

Di Fang - Mathematical Analysis of Many-Body Quantum Simulation with Coulomb Potentials

5 ошибок, которые совершает большинство лыжников | И как их исправить

5 ошибок, которые совершает большинство лыжников | И как их исправить

Steven Ludtke - Contextual Conformational Variability in CryoEM and CryoET using Deep Learning

Steven Ludtke - Contextual Conformational Variability in CryoEM and CryoET using Deep Learning

Naomi Ginsberg - Formation and function of assembled nanomaterials with multimodal X-ray scattering

Naomi Ginsberg - Formation and function of assembled nanomaterials with multimodal X-ray scattering

Dr. Matthew Parent's Talk on Super-resolution Microscopy Tutorial  | Mondal Lab Visit 11 Feb 2023

Dr. Matthew Parent's Talk on Super-resolution Microscopy Tutorial | Mondal Lab Visit 11 Feb 2023

Важные открытия XXI века: почему рак победил и что не так с клонированием? Что скрывают нобелевки?

Важные открытия XXI века: почему рак победил и что не так с клонированием? Что скрывают нобелевки?

Ken Brown - Tutorial Introduction to Quantum Simulation, Part 1 of 2 - IPAM at UCLA

Ken Brown - Tutorial Introduction to Quantum Simulation, Part 1 of 2 - IPAM at UCLA

The NanoMi Project: an open source electron microscope

The NanoMi Project: an open source electron microscope

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com