Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

MIT 6.S191 (Liquid AI): Large Language Models

Автор: Alexander Amini

Загружено: 2025-04-21

Просмотров: 50458

Описание:

MIT Introduction to Deep Learning 6.S191: Lecture 8
Large Language Models
Lecturer: Maxime Labonne (Liquid AI)

Maxime Labonne is the Head of Post-Training at Liquid AI. He has made significant contributions to the open-source community, including the LLM Course, tutorials on fine-tuning, tools such as LLM AutoEval, and several state-of-the-art models like NeuralDaredevil. He is the author of the best-selling books “LLM Engineer’s Handbook” and “Hands-On Graph Neural Networks Using Python”.

For all lectures, slides, and lab materials: http://introtodeeplearning.com​​

Subscribe to stay up to date with new deep learning lectures at MIT, or follow us @MITDeepLearning on Twitter and Instagram to stay fully-connected!!

MIT 6.S191 (Liquid AI): Large Language Models

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

MIT 6.S191 (Comet ML): A Hipocratic Oath, for *your* AI

MIT 6.S191 (Comet ML): A Hipocratic Oath, for *your* AI

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

MIT 6.S191 (2023): Convolutional Neural Networks

MIT 6.S191 (2023): Convolutional Neural Networks

Intro to Fine-Tuning Large Language Models

Intro to Fine-Tuning Large Language Models

Anthropic C.E.O.: Massive A.I. Spending Could Haunt Some Companies

Anthropic C.E.O.: Massive A.I. Spending Could Haunt Some Companies

The Thinking Game | Full documentary | Tribeca Film Festival official selection

The Thinking Game | Full documentary | Tribeca Film Festival official selection

MIT 6.S191 (2024): Reinforcement Learning

MIT 6.S191 (2024): Reinforcement Learning

Andrej Karpathy: Software Is Changing (Again)

Andrej Karpathy: Software Is Changing (Again)

Ilya Sutskever – We're moving from the age of scaling to the age of research

Ilya Sutskever – We're moving from the age of scaling to the age of research

The Real Reason Huge AI Models Actually Work [Prof. Andrew Wilson]

The Real Reason Huge AI Models Actually Work [Prof. Andrew Wilson]

MIT 6.S191 (2020): Neurosymbolic AI

MIT 6.S191 (2020): Neurosymbolic AI

MIT 6.S191 (2023): The Modern Era of Statistics

MIT 6.S191 (2023): The Modern Era of Statistics

Visualizing transformers and attention | Talk for TNG Big Tech Day '24

Visualizing transformers and attention | Talk for TNG Big Tech Day '24

RAG vs Fine-Tuning vs Prompt Engineering: Optimizing AI Models

RAG vs Fine-Tuning vs Prompt Engineering: Optimizing AI Models

MIT 6.S191 (2023): Text-to-Image Generation

MIT 6.S191 (2023): Text-to-Image Generation

MIT Introduction to Deep Learning (2023) | 6.S191

MIT Introduction to Deep Learning (2023) | 6.S191

Stanford CME295 Transformers & LLMs | Autumn 2025 | Lecture 1 - Transformer

Stanford CME295 Transformers & LLMs | Autumn 2025 | Lecture 1 - Transformer

MIT 6.S191 (Microsoft): AI for Biology

MIT 6.S191 (Microsoft): AI for Biology

Richard Sutton – Father of RL thinks LLMs are a dead end

Richard Sutton – Father of RL thinks LLMs are a dead end

MIT 6.S191: Convolutional Neural Networks

MIT 6.S191: Convolutional Neural Networks

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]