A systematic comparison of computational methods for expression forecasting | Eric Kernfeld
Автор: Valence Labs
Загружено: 2025-08-25
Просмотров: 452
Portal is the home of the AI for drug discovery community. Join for more details on this talk and to connect with the speakers: https://portal.valencelabs.com/multio...
Paper: A systematic comparison of computational methods for expression forecasting
https://www.biorxiv.org/content/10.11...
Abstract: Expression forecasting methods use machine learning models to predict how a cell will alter its transcriptome upon perturbation. Such methods are enticing because they promise to answer pressing questions in fields ranging from developmental genetics to cell fate engineering and because they are a fast, cheap, and accessible complement to the corresponding experiments. However, the absolute and relative accuracy of these methods is poorly characterized, limiting their informed use, their improvement, and the interpretation of their predictions. To address these issues, we created a benchmarking platform that combines a panel of 11 large-scale perturbation datasets with an expression forecasting software engine that encompasses or interfaces to a wide variety of methods. We used our platform to systematically assess methods, parameters, and sources of auxiliary data, finding that performance strongly depends on the choice of metric, and especially for simple metrics like mean squared error, it is uncommon for expression forecasting methods to out-perform simple baselines. Our platform will serve as a resource to improve methods and to identify contexts in which expression forecasting can succeed.
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: