Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Grant Sanderson (3Blue1Brown) | Unsolvability of the Quintic | The Cartesian Cafe w/ Timothy Nguyen

Автор: Timothy Nguyen

Загружено: 2022-10-13

Просмотров: 132270

Описание:

Grant Sanderson is a mathematician who is the author of the YouTube channel “3Blue1Brown”, viewed by millions for its beautiful blend of visual animation and mathematical pedagogy. His channel covers a wide range of mathematical topics, which to name a few include calculus, quaternions, epidemic modeling, and artificial neural networks. Grant received his bachelor's degree in mathematics from Stanford University and has worked with a variety of mathematics educators and outlets, including Khan Academy, The Art of Problem Solving, MIT OpenCourseWare, Numberphile, and Quanta Magazine.

In this episode, we discuss the famous unsolvability of quintic polynomials: there exists no formula, consisting only of finitely many arithmetic operations and radicals, for expressing the roots of a general fifth degree polynomial in terms of the polynomial's coefficients. The standard proof that is taught in abstract algebra courses uses the machinery of Galois theory. Instead of following that route, Grant and I proceed in barebones style along (somewhat) historical lines by first solving quadratics, cubics, and quartics. Along the way, we present the insights obtained by Lagrange that motivate a very natural combinatorial question, which contains the germs of modern group theory and Galois theory and whose answer suggests that the quintic is unsolvable (later confirmed through the work of Abel and Galois). We end with some informal discussions about Abel's proof and the topological proof due to Vladimir Arnold.

#3blue1brown #grantsanderson #math #maths #mathematics #algebra #grouptheory #pedagogy #equations #polynomials

Patreon:   / timothynguyen  

Part I. Introduction
00:00: Introduction
00:52: How did you get interested in math?
06:30: Future of math pedagogy and AI
12:03: Overview. How Grant got interested in unsolvability of the quintic
15:26: Problem formulation
17:42: History of solving polynomial equations
19:50: Po-Shen Loh

Part II. Working Up to the Quintic
28:06: Quadratics
34:38 : Cubics
37:20: Viete’s formulas
48:51: Math duels over solving cubics: del Ferro, Fiorre, Tartaglia, Cardano, Ferrari
53:24: Prose poetry of solving cubics
54:30: Cardano’s Formula derivation
1:03:22: Resolvent
1:04:10: Why exactly 3 roots from Cardano’s formula?

Part III. Thinking More Systematically
1:12:25: Takeaways and Lagrange’s insight into why quintic might be unsolvable
1:17:20: Origins of group theory?
1:23:29: History’s First Whiff of Galois Theory
1:25:24: Fundamental Theorem of Symmetric Polynomials
1:30:18: Solving the quartic from the resolvent
1:40:08: Recap of overall logic

Part IV. Unsolvability of the Quintic
1:52:30: S_5 and A_5 group actions
2:01:18: Lagrange’s approach fails!
2:04:01: Abel’s proof
2:06:16: Arnold’s Topological Proof
2:18:22: Closing Remarks

Further Reading on Arnold's Topological Proof of Unsolvability of the Quintic:
1) L. Goldmakher. https://web.williams.edu/Mathematics/...
2) B. Katz.    • Short proof of Abel's theorem that 5th deg...  

Twitter:
@iamtimnguyen

Webpage:
http://www.timothynguyen.org

Apple Podcasts:
https://podcasts.apple.com/us/podcast...

Spotify:
https://open.spotify.com/show/1X5asAB...

Grant Sanderson (3Blue1Brown) | Unsolvability of the Quintic | The Cartesian Cafe w/ Timothy Nguyen

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Eigenbros ep 120 - Timothy Nguyen (Problems with Eric Weinstein's Geometric Unity)

Eigenbros ep 120 - Timothy Nguyen (Problems with Eric Weinstein's Geometric Unity)

Grant Sanderson (@3blue1brown) — Past, present, & future of mathematics

Grant Sanderson (@3blue1brown) — Past, present, & future of mathematics

Mystery of the Quintic

Mystery of the Quintic

Почему Питер Шольце — математик, каких бывает раз в поколение?

Почему Питер Шольце — математик, каких бывает раз в поколение?

Я могу решить любое уравнение пятой степени!!

Я могу решить любое уравнение пятой степени!!

Why There's 'No' Quintic Formula (proof without Galois theory)

Why There's 'No' Quintic Formula (proof without Galois theory)

Но почему нет формулы пятой степени? | Теория Галуа

Но почему нет формулы пятой степени? | Теория Галуа

Prelude to Galois Theory: Exploring Symmetric Polynomials

Prelude to Galois Theory: Exploring Symmetric Polynomials

Revolutionary Math Proof No One Could Explain...Until Now [Part 1]

Revolutionary Math Proof No One Could Explain...Until Now [Part 1]

Scott Aaronson | Quantum Computing: Dismantling the Hype | The Cartesian Cafe with Timothy Nguyen

Scott Aaronson | Quantum Computing: Dismantling the Hype | The Cartesian Cafe with Timothy Nguyen

Galois theory I  | Math History | NJ Wildberger

Galois theory I | Math History | NJ Wildberger

Вложенные квадратные корни i.

Вложенные квадратные корни i.

Everything You Ever Wanted To Know About Galois Theory | Practical Galois Theory #1 | #SoME4

Everything You Ever Wanted To Know About Galois Theory | Practical Galois Theory #1 | #SoME4

Terence Tao on the cosmic distance ladder

Terence Tao on the cosmic distance ladder

de Moivre quintic formula

de Moivre quintic formula

What is Solvability in Galois Theory?

What is Solvability in Galois Theory?

The Integral That Changed Math Forever

The Integral That Changed Math Forever

Why you can't solve quintic equations (Galois theory approach) #SoME2

Why you can't solve quintic equations (Galois theory approach) #SoME2

Richard Borcherds | Monstrous Moonshine: From Group Theory to String Theory | The Cartesian Cafe

Richard Borcherds | Monstrous Moonshine: From Group Theory to String Theory | The Cartesian Cafe

Неразрешимость квинтики

Неразрешимость квинтики

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com