Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Richard Borcherds | Monstrous Moonshine: From Group Theory to String Theory | The Cartesian Cafe

Автор: Timothy Nguyen

Загружено: 2024-02-02

Просмотров: 14243

Описание:

Richard Borcherds is a mathematician and professor at University of California Berkeley known for his work on lattices, group theory, and infinite-dimensional algebras. His numerous accolades include being awarded the Fields Medal in 1998 and being elected a fellow of the American Mathematical Society and the National Academy of Sciences.

#math #maths #stringtheory #grouptheory

Patreon (bonus materials + video chat):
  / timothynguyen  

In this episode, Richard and I give an overview of Richard's most famous result: his proof of the Monstrous Moonshine conjecture relating the monster group on the one hand and modular forms on the other. A remarkable feature of the proof is that it involves vertex algebras inspired from elements of string theory. Some familiarity with group theory and representation theory are assumed in our discussion.

I. Introduction
00:25 : Biography
02:51 : Success in mathematics
04:04 : Monstrous Moonshine overview and John Conway
09:44 : Technical overview

II. Group Theory
11:31 : Classification of finite-simple groups + history of the monster group
18:03 : Conway groups + Leech lattice
22:13 : Why was the monster conjectured to exist + more history
28:43 : Centralizers and involutions
32:37 : Griess algebra

III. Modular Forms
36:42 : Definitions
40:06 : The elliptic modular function
48:58 : Subgroups of SL_2(Z)

IV. Monstrous Moonshine Conjecture Statement
57:17 : Representations of the monster
59:22 : Hauptmoduls
1:03:50 : Statement of the conjecture
1:07:06 : Atkin-Fong-Smith's first proof
1:09:34 : Frenkel-Lepowski-Meurman's work + significance of Borcherd's proof

V. Sketch of Proof
1:14:47 : Vertex algebra and monster Lie algebra
1:21:02 : No ghost theorem from string theory
1:25:24 : What's special about dimension 26?
1:28:33 : Monster Lie algebra details
1:32:30 : Dynkin diagrams and Kac-Moody algebras
1:43:21 : Simple roots and an obscure identity
1:45:13 : Weyl denominator formula, Vandermonde identity
1:52:14 : Chasing down where modular forms got smuggled in
1:55:03 : Final calculations

VI. Epilogue
1:57:53 : Your most proud result?
2:00:47 : Monstrous moonshine for other sporadic groups?
2:02:28 : Connections to other fields. Witten and black holes and mock modular forms.

Further reading:
V Tatitschef. A short introduction to Monstrous Moonshine. https://arxiv.org/pdf/1902.03118.pdf

Twitter:
@iamtimnguyen

Webpage:
http://www.timothynguyen.org

Apple Podcasts:
https://podcasts.apple.com/us/podcast...

Richard Borcherds | Monstrous Moonshine: From Group Theory to String Theory | The Cartesian Cafe

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Monstrous moonshine

Monstrous moonshine

Ричард Борчердс: Группа монстров, Теория струн, Самогон

Ричард Борчердс: Группа монстров, Теория струн, Самогон

Alex Kontorovich | Circle Packings and Their Hidden Treasures | The Cartesian Cafe with Tim Nguyen

Alex Kontorovich | Circle Packings and Their Hidden Treasures | The Cartesian Cafe with Tim Nguyen

Серр: Конечные группы, вчера и сегодня

Серр: Конечные группы, вчера и сегодня

Jeffrey Harvey - From Moonshine to Black Holes: Number Theory in Math and Physics (Sept 6, 2017)

Jeffrey Harvey - From Moonshine to Black Holes: Number Theory in Math and Physics (Sept 6, 2017)

Grant Sanderson (3Blue1Brown) | Unsolvability of the Quintic | The Cartesian Cafe w/ Timothy Nguyen

Grant Sanderson (3Blue1Brown) | Unsolvability of the Quintic | The Cartesian Cafe w/ Timothy Nguyen

Marcus Hutter | Universal Artificial Intelligence and Solomonoff Induction | The Cartesian Cafe

Marcus Hutter | Universal Artificial Intelligence and Solomonoff Induction | The Cartesian Cafe

Simple groups, Lie groups, and the search for symmetry I  | Math History | NJ Wildberger

Simple groups, Lie groups, and the search for symmetry I | Math History | NJ Wildberger

L'œuvre d'Alexandre Grothendieck par Pierre Deligne (French with English subtitles)

L'œuvre d'Alexandre Grothendieck par Pierre Deligne (French with English subtitles)

Mathematician explains Gödel's Incompleteness Theorem | Edward Frenkel and Lex Fridman

Mathematician explains Gödel's Incompleteness Theorem | Edward Frenkel and Lex Fridman

Po-Shen Loh | The Mathematics of COVID-19 Contact Tracing | The Cartesian Cafe with Timothy Nguyen

Po-Shen Loh | The Mathematics of COVID-19 Contact Tracing | The Cartesian Cafe with Timothy Nguyen

Prelude to Galois Theory: Exploring Symmetric Polynomials

Prelude to Galois Theory: Exploring Symmetric Polynomials

The Moonshine Conjecture and Advice for Math Students | Richard Borcherds | TEDxNiendorf

The Moonshine Conjecture and Advice for Math Students | Richard Borcherds | TEDxNiendorf

Why Do Sporadic Groups Exist?

Why Do Sporadic Groups Exist?

Frank Calegari: 30 years of modularity: number theory since the proof of Fermat's Last Theorem

Frank Calegari: 30 years of modularity: number theory since the proof of Fermat's Last Theorem

Перспективный взгляд на алгебраические кривые

Перспективный взгляд на алгебраические кривые

Признаки свержения автократий. S09E20

Признаки свержения автократий. S09E20

Теренс Тао о том, как Григорий Перельман решил гипотезу Пуанкаре | Лекс Фридман

Теренс Тао о том, как Григорий Перельман решил гипотезу Пуанкаре | Лекс Фридман

Eigenbros ep 120 - Timothy Nguyen (Problems with Eric Weinstein's Geometric Unity)

Eigenbros ep 120 - Timothy Nguyen (Problems with Eric Weinstein's Geometric Unity)

Sporadic groups

Sporadic groups

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com