Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

🎯 How to Make Your GenAI App More Relevant: Measure, Test & Improve with Langflow

Автор: DataStax Developers

Загружено: 2025-04-10

Просмотров: 127

Описание:

Struggling to get your GenAI or RAG application into production? You’re not alone—and we’ve got the tools to help.

In this video, Adarsh (Solution Engineer, DataStax) walks through how to evaluate and improve GenAI applications using an automated toolkit built to measure precision and other accuracy metrics. Learn how to generate ground truth datasets, run retrieval accuracy tests, and fine-tune your system to hit 95%+ relevance—all in-browser.

✅ No more guesswork
✅ No more manual evaluation
✅ Just measurable results—and better outcomes.

⸻

What You’ll Learn:
📊 Why evaluating GenAI apps is critical
📄 How to auto-generate question-answer (QA) pairs from your own data
⚙️ How to use the Testing RAG Toolkit to assess performance
📈 Key metrics to track: precision, recall, hallucination, faithfulness, and more
📦 How to store ground truth data in Astra DB for reusability and scale
🧪 How to integrate with Langflow to debug, test, and improve quickly

⸻

Demo Highlights:
🔹 Generate semantic chunks from PDFs using Google Flash
🔹 Auto-create ground truth datasets (CSV + AstraDB)
🔹 Evaluate accuracy against ground truth using built-in metrics
🔹 Visualize performance in a simple browser-based dashboard
🔹 Iterate your way to production-ready with LLM-powered tools

⸻
Core Evaluation Metrics:
1. Precision - Measures how many of the retrieved documents are actually relevant to the query.
(Formula: Relevant Retrieved Docs / Total Retrieved Docs)
2. Recall - Measures how many of the relevant documents were actually retrieved.
(Formula: Relevant Retrieved Docs / Total Relevant Docs)
3. F1 Score - Harmonic mean of precision and recall. It balances both metrics into a single score.
(Formula: 2 * (Precision * Recall) / (Precision + Recall) )

Generation-Focused Metrics:
4. Claim Recall - Measures how many factual claims made in the answer are supported by retrieved documents. High value indicates fewer hallucinations.
5. Context Precision - Measures how much of the content used in the generated answer actually comes from relevant retrieved contexts. Think of it as: “Is the model using the right retrieved content when answering?”
6. Context Utilization -Fraction of retrieved relevant documents that were actually used in generating the answer. Highlights efficiency of retrieval usage.

Noise Sensitivity Metrics:
7. Noise Sensitivity (Relevant) - Measures how much adding irrelevant documents affects the answer quality when relevant docs are present. Low sensitivity = model is robust even if noise is added.
8. Noise Sensitivity (Irrelevant) - Measures how much adding irrelevant documents affects the answer when only irrelevant docs are retrieved. Helps check hallucination risk under full noise.

Trustworthiness & Truthfulness:
9. Self-Knowledge - How well the model abstains from answering when it doesn’t know or lacks relevant information. Good models admit ignorance rather than hallucinating.
10. Faithfulness - Measures whether the generated answer strictly aligns with the retrieved evidence. High faithfulness = no added or made-up info.
11. Hallucination - Measures how much of the generated answer is not supported by any retrieved document. High hallucination = more made-up content.

⸻

🔗 Download the Framework at:
https://github.com/shiragannavar/Test...
shiragannavar/Testing-RAG
Try Astra DB: https://astra.datastax.com
Docs: https://docs.datastax.com

⸻

Let’s build GenAI apps that are accurate, reliable, and production-ready!
#GenAI #Langflow #RAG #AIevaluation #AgenticAI #AstraDB #LLM #AItools #GroundTruth #AIworkflow

🎯 How to Make Your GenAI App More Relevant: Measure, Test & Improve with Langflow

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Все стратегии RAG объясняются за 13 минут (без лишних слов)

Все стратегии RAG объясняются за 13 минут (без лишних слов)

⚡️ Learn how to use Langflow as both an MCP client & server!

⚡️ Learn how to use Langflow as both an MCP client & server!

Что такое стек ИИ? Магистратура LLM, RAG и аппаратное обеспечение ИИ

Что такое стек ИИ? Магистратура LLM, RAG и аппаратное обеспечение ИИ

Don't do RAG - This method is way faster & accurate...

Don't do RAG - This method is way faster & accurate...

[System design] Мессенджер на миллиард пользователей

[System design] Мессенджер на миллиард пользователей

Как 27M Model вообще смогла обойти ChatGPT?

Как 27M Model вообще смогла обойти ChatGPT?

Agentic RAG: Make Chatting with Docs Smarter

Agentic RAG: Make Chatting with Docs Smarter

GraphRAG: союз графов знаний и RAG: Эмиль Эйфрем

GraphRAG: союз графов знаний и RAG: Эмиль Эйфрем

Microsoft Foundry — все необходимое для создания приложений и агентов ИИ

Microsoft Foundry — все необходимое для создания приложений и агентов ИИ

EASIEST Way to Train LLM Train w/ unsloth (2x faster with 70% less GPU memory required)

EASIEST Way to Train LLM Train w/ unsloth (2x faster with 70% less GPU memory required)

💾 New file management & data handling features for Langflow

💾 New file management & data handling features for Langflow

Build AI Agents with MCP in Langflow 1.4

Build AI Agents with MCP in Langflow 1.4

Точка зрения: что вы увидите во время захвата искусственным интеллектом

Точка зрения: что вы увидите во время захвата искусственным интеллектом

How to prepare data for LLMs

How to prepare data for LLMs

Fine Tune a model with MLX for Ollama

Fine Tune a model with MLX for Ollama

Claude Code: полный гайд по AI-кодингу (хаки, техники и секреты)

Claude Code: полный гайд по AI-кодингу (хаки, техники и секреты)

How to Improve LLMs with RAG (Overview + Python Code)

How to Improve LLMs with RAG (Overview + Python Code)

Программируем с ИИ в VS Code - БЕСПЛАТНО! Сможет каждый!

Программируем с ИИ в VS Code - БЕСПЛАТНО! Сможет каждый!

Вы (пока) не отстаёте: как освоить ИИ за 17 минут

Вы (пока) не отстаёте: как освоить ИИ за 17 минут

Превратите ЛЮБОЙ файл в знания LLM за СЕКУНДЫ

Превратите ЛЮБОЙ файл в знания LLM за СЕКУНДЫ

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]