Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

The Data Addition Dilemma

Автор: Simons Institute for the Theory of Computing

Загружено: 2024-11-12

Просмотров: 1380

Описание:

Irene Y Chen (UC Berkeley)
https://simons.berkeley.edu/talks/ire...
Domain Adaptation and Related Areas

When training machine learning methods, combining data from different sources isn't always beneficial. While more data generally helps machine learning models, mixing data from dissimilar sources can sometimes reduce overall accuracy, create unpredictable fairness issues, and worsen performance for underrepresented groups. We identify this situation as the "Data Addition Dilemma", which happens due to a trade-off between the benefits of more data and the drawbacks of combining different data distributions. We find that this possibly arises from an empirically observed trade-off between model performance improvements due to data scaling and model deterioration from distribution shift. We thus establish baseline strategies for navigating this dilemma, introducing distribution shift heuristics to guide decision-making on which data sources to add in data scaling, in order to yield the expected model performance improvements. We conclude with a discussion of the required considerations for data collection and suggestions for studying data composition and scale in the age of increasingly larger models.

The Data Addition Dilemma

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

How Transformers Learn Causal Structure with Gradient Descent

How Transformers Learn Causal Structure with Gradient Descent

Label Noise: Ignorance is Bliss

Label Noise: Ignorance is Bliss

Stanford CS229 I Machine Learning I Building Large Language Models (LLMs)

Stanford CS229 I Machine Learning I Building Large Language Models (LLMs)

AI’s Models of the World, and Ours | Theoretically Speaking

AI’s Models of the World, and Ours | Theoretically Speaking

Panel Discussion

Panel Discussion

"От такого удара можно и не оправиться": Ранкс объяснил, что за безумная сила несется к нам

Как Россия учится летать на старых самолетах

Как Россия учится летать на старых самолетах

«Когда мы что-то видим, мы всегда что-то не видим» // «Скажи Гордеевой»

«Когда мы что-то видим, мы всегда что-то не видим» // «Скажи Гордеевой»

Понимание Z-преобразования

Понимание Z-преобразования

ВОЙНА ИЗ ПОСЛЕДНИХ СИЛ. БЕСЕДА С ИГОРЕМ ЛИПСИЦЕМ @IgorLipsits_1950

ВОЙНА ИЗ ПОСЛЕДНИХ СИЛ. БЕСЕДА С ИГОРЕМ ЛИПСИЦЕМ @IgorLipsits_1950

ЗАНИМАТЕЛЬНАЯ ВЕРОЯТНОСТЬ. ЛЕКЦИЯ 21.11.2025 В РАМКАХ ЛЕКТОРИЯ ВДНХ

ЗАНИМАТЕЛЬНАЯ ВЕРОЯТНОСТЬ. ЛЕКЦИЯ 21.11.2025 В РАМКАХ ЛЕКТОРИЯ ВДНХ

Strong Generalization from Small Brains and No Training Data

Strong Generalization from Small Brains and No Training Data

Visualizing transformers and attention | Talk for TNG Big Tech Day '24

Visualizing transformers and attention | Talk for TNG Big Tech Day '24

Formal Reasoning Meets LLMs: Toward AI for Mathematics and Verification

Formal Reasoning Meets LLMs: Toward AI for Mathematics and Verification

11. Introduction to Machine Learning

11. Introduction to Machine Learning

Class 1: “What’s Happened to Income & Wealth” by UC Berkeley Professor Reich

Class 1: “What’s Happened to Income & Wealth” by UC Berkeley Professor Reich

Julia Kempe - Synthetic Data – Friend or Foe in the Age of Scaling?

Julia Kempe - Synthetic Data – Friend or Foe in the Age of Scaling?

Kenneth A. Ribet,

Kenneth A. Ribet, "A 2020 View of Fermat's Last Theorem"

Leon Chua, UC Berkeley - 10 Things You Didn't Know About Memristors

Leon Chua, UC Berkeley - 10 Things You Didn't Know About Memristors

Learning at test time in LLMs [Jonas Hübotter]

Learning at test time in LLMs [Jonas Hübotter]

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com