Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Benjamin Vincent - What-if- Causal reasoning meets Bayesian Inference | PyData Global 2022

Автор: PyData

Загружено: 2023-03-08

Просмотров: 11613

Описание:

www.pydata.org

We learn about the world from data, drawing on a broad array of statistical and inferential tools. The problem is that causal reasoning is needed to answer many of our questions, but few data scientists have this in their skill set. This talk will give a high-level introduction to aspects of causal reasoning and how it is complemented by Bayesian inference. A worked example will be given of how to answer what-if questions.

PyData is an educational program of NumFOCUS, a 501(c)3 non-profit organization in the United States. PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The global PyData network promotes discussion of best practices, new approaches, and emerging technologies for data management, processing, analytics, and visualization. PyData communities approach data science using many languages, including (but not limited to) Python, Julia, and R.

PyData conferences aim to be accessible and community-driven, with novice to advanced level presentations. PyData tutorials and talks bring attendees the latest project features along with cutting-edge use cases.

00:00 Introduction to talk
00:31 Package announcement
00:33 Speaker introduction
01:13 Causal inference is trending
01:22 Google Trends on Causal inference
01:51 Is it convincing enough?
02:41 Bayesian model on the trends using PyMC
03:45 Hype Cycle for emerging tech by Gartner
04:10 Difference between Statistical relationships and Causal relationships
06:55 Observational study on causal relationship between Tea and Death
09:00 Confounding variables in our study
09:33 Randomized control trial (RCT)
10:25 Can you model confounding variables and not randomize?
12:17 Randomization is very effective
12:35 Randomized control trials can be problematic
14:56 Quasi-Experimentation by Charles S. Reichardt
16:08 CausalPy package
16:44 What does CausalPy do?
16:50 Example: What was the causal impact of Brexit?
19:00 Normalized GDP
19:55 What do we not have on this graph?
21:18 Fitting the model
22:32 Synthetic control method in CausalPy
23:28 Visualizing the output
26:03 Other features of CausalPy
26:10 Interrupted time series
26:52 Regression discontinuity
27:49 Difference in differences
28:04 Did my advertising budget cause more sales?
29:41 Summary
30:54 Q/A Any suggested resource to properly design RCT?
31:56 Q/A Why didn't you use a diff-diff model?
32:51 Q/A Training a ML model to predict pre-treatment GDP of UK
34:07 Q/A How is CausalPy related to CausalImpact
35:07 Q/A Interrupted time series and regression discontinuity

Benjamin Vincent - What-if- Causal reasoning meets Bayesian Inference | PyData Global 2022

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Michael Johns: Propensity Score Matching: A Non-experimental Approach to Causal... | PyData NYC 2019

Michael Johns: Propensity Score Matching: A Non-experimental Approach to Causal... | PyData NYC 2019

Hanna van der Vlis - Clusterf*ck: A Practical Guide to Bayesian Hierarchical Modeling in PyMC3

Hanna van der Vlis - Clusterf*ck: A Practical Guide to Bayesian Hierarchical Modeling in PyMC3

Andrew Gelman - Bayesian Methods in Causal Inference and Decision Making

Andrew Gelman - Bayesian Methods in Causal Inference and Decision Making

Hajime Takeda - Media Mix Modeling:How to Measure the Effectiveness of Advertising

Hajime Takeda - Media Mix Modeling:How to Measure the Effectiveness of Advertising

The Bayesians are Coming to Time Series

The Bayesians are Coming to Time Series

An introduction to Causal Inference with Python – making accurate estimates of cause and effect from

An introduction to Causal Inference with Python – making accurate estimates of cause and effect from

Thomas Wiecki - Solving Real-World Business Problems with Bayesian Modeling | PyData London 2022

Thomas Wiecki - Solving Real-World Business Problems with Bayesian Modeling | PyData London 2022

Почему «Трансформеры» заменяют CNN?

Почему «Трансформеры» заменяют CNN?

What is causal inference, and why should data scientists know? by Ludvig Hult

What is causal inference, and why should data scientists know? by Ludvig Hult

14. Causal Inference, Part 1

14. Causal Inference, Part 1

Eric J. Ma - An Attempt At Demystifying Bayesian Deep Learning

Eric J. Ma - An Attempt At Demystifying Bayesian Deep Learning

Demo: Enabling end-to-end causal inference at scale

Demo: Enabling end-to-end causal inference at scale

PyMCon Web Series - Bayesian Causal Modeling - Thomas Wiecki

PyMCon Web Series - Bayesian Causal Modeling - Thomas Wiecki

Chris Fonnesbeck - Probabilistic Python: An Introduction to Bayesian Modeling with PyMC

Chris Fonnesbeck - Probabilistic Python: An Introduction to Bayesian Modeling with PyMC

Max Mergenthaler and Fede Garza - Quantifying Uncertainty in Time Series Forecasting

Max Mergenthaler and Fede Garza - Quantifying Uncertainty in Time Series Forecasting

Vincent Warmerdam - Keynote

Vincent Warmerdam - Keynote "Natural Intelligence is All You Need [tm]"

Лучший способ заниматься статистикой | Байесовский метод №1

Лучший способ заниматься статистикой | Байесовский метод №1

Maria Feria - A Practical Approach To Unlock Value From Data and Analytics | PyData Global 2022

Maria Feria - A Practical Approach To Unlock Value From Data and Analytics | PyData Global 2022

Foundations of causal inference and its impacts on machine learning webinar

Foundations of causal inference and its impacts on machine learning webinar

Thomas Wiecki: The State of the Art for Probabilistic Programming | PyData Global 2022

Thomas Wiecki: The State of the Art for Probabilistic Programming | PyData Global 2022

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]