Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Angela Zhou: Robust Fitted-Q-Evaluation & Iteration under Sequentially Exogenous Unobsvd Confounders

Автор: Online Causal Inference Seminar

Загружено: 2025-05-07

Просмотров: 256

Описание:

Subscribe to the channel to get notified when we release a new video.
Like the video to tell YouTube that you want more content like this on your feed.
See our website for future seminars: https://sites.google.com/view/ocis/home

Tuesday, Apr 29, 2025: Angela Zhou (USC Marshall)
Title: Robust Fitted-Q-Evaluation and Iteration under Sequentially Exogenous Unobserved Confounders
Discussant: Qingyuan Zhao (University of Cambridge)
Abstract: Offline reinforcement learning is important in domains such as medicine, economics, and e-commerce where online experimentation is costly, dangerous or unethical, and where the true model is unknown. However, most methods assume all covariates used in the behavior policy’s action decisions are observed. Though this assumption, sequential ignorability/unconfoundedness, likely does not hold in observational data, most of the data that accounts for selection into treat- ment may be observed, motivating sensitivity analysis. We study robust policy evaluation and policy optimization in the presence of sequentially-exogenous unobserved confounders under a sensitivity model. We propose and analyze orthogonalized robust fitted-Q-iteration that uses closed-form solutions of the robust Bellman operator to derive a loss minimization problem for the robust Q function, and adds a bias-correction to quantile estimation. Our algorithm enjoys the computational ease of fitted-Q-iteration and statistical improvements (reduced dependence on quantile estimation error) from orthogonalization. We provide sample complexity bounds, insights, and show effectiveness both in simulations and on real-world longitudinal healthcare data of treating sepsis. In particular, our model of sequential unobserved confounders yields an online Markov decision process, rather than partially observed Markov decision process: we illustrate how this can enable warm-starting optimistic reinforcement learning algorithms with valid robust bounds from observational data.

Angela Zhou: Robust Fitted-Q-Evaluation & Iteration under Sequentially Exogenous Unobsvd Confounders

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Causal Inference in R: The Whole Game - Malcolm Barrett

Causal Inference in R: The Whole Game - Malcolm Barrett

Double Machine Learning for Causal and Treatment Effects

Double Machine Learning for Causal and Treatment Effects

Sam Pimentel: Design Sensitivity and Its Implications for Weighted Observational Studies

Sam Pimentel: Design Sensitivity and Its Implications for Weighted Observational Studies

Linbo Wang: The synthetic instrument: From sparse association to sparse causation

Linbo Wang: The synthetic instrument: From sparse association to sparse causation

Nancy Reid -

Nancy Reid - "Models and Likelihood"

What is causal inference, and why should data scientists know? by Ludvig Hult

What is causal inference, and why should data scientists know? by Ludvig Hult

Michael Johns: Propensity Score Matching: A Non-experimental Approach to Causal... | PyData NYC 2019

Michael Johns: Propensity Score Matching: A Non-experimental Approach to Causal... | PyData NYC 2019

Nathan Kallus: Learning Surrogate Indices from Historical A/Bs Adversarial ML for Debiased Inference

Nathan Kallus: Learning Surrogate Indices from Historical A/Bs Adversarial ML for Debiased Inference

Markov Decision Processes 1 - Value Iteration | Stanford CS221: AI (Autumn 2019)

Markov Decision Processes 1 - Value Iteration | Stanford CS221: AI (Autumn 2019)

Почему простые числа образуют эти спирали? | Теорема Дирихле и пи-аппроксимации

Почему простые числа образуют эти спирали? | Теорема Дирихле и пи-аппроксимации

Sizhu Lu: Estimating treatment effects with competing intercurrent events in randomized trials

Sizhu Lu: Estimating treatment effects with competing intercurrent events in randomized trials

Guido Imbens: Identification of nonparametric factor models for average treatment effects

Guido Imbens: Identification of nonparametric factor models for average treatment effects

Joseph Antonelli: Partial identification & unmeasured confounding with multiple treatment & outcomes

Joseph Antonelli: Partial identification & unmeasured confounding with multiple treatment & outcomes

An introduction to Causal Inference with Python – making accurate estimates of cause and effect from

An introduction to Causal Inference with Python – making accurate estimates of cause and effect from

6.5 - Doubly Robust Methods, Matching, Double Machine Learning, and Causal Trees

6.5 - Doubly Robust Methods, Matching, Double Machine Learning, and Causal Trees

Причинно-следственные выводы в Python: от теории к практике

Причинно-следственные выводы в Python: от теории к практике

Causal Effects via Propensity Scores | Introduction & Python Code

Causal Effects via Propensity Scores | Introduction & Python Code

Прорыв года! 16 летняя девушка творит чудеса за шахматной доской!

Прорыв года! 16 летняя девушка творит чудеса за шахматной доской!

Average Treatment Effects: Introduction

Average Treatment Effects: Introduction

Zijian Guo: Multi-Source Learning with Minimax Optimization: Adversarial Robustness to Invariance

Zijian Guo: Multi-Source Learning with Minimax Optimization: Adversarial Robustness to Invariance

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]