Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Stanford CS25: V4 I Hyung Won Chung of OpenAI

Автор: Stanford Online

Загружено: 2024-06-11

Просмотров: 207972

Описание:

April 11, 2024
Speaker: Hyung Won Chung, OpenAI

Shaping the Future of AI from the History of Transformer

AI is developing at such an overwhelming pace that it is hard to keep up. Instead of spending all our energy catching up with the latest development, I argue that we should study the change itself. First step is to identify and understand the driving force behind the change. For AI, it is the exponentially cheaper compute and associated scaling. I will provide a highly-opinionated view on the early history of Transformer architectures, focusing on what motivated each development and how each became less relevant with more compute. This analysis will help us connect the past and present in a unified perspective, which in turn makes it more manageable to project where the field is heading. Slides here: https://docs.google.com/presentation/...

0:00 Introduction
2:05 Identifying and understanding the dominant driving force behind AI.
15:18 Overview of Transformer architectures: encoder-decoder, encoder-only and decoder-only
23:29 Differences between encoder-decoder and decoder-only, and rationale for encoder-decoder’s additional structures from the perspective of scaling.

About the speaker:
Hyung Won Chung is a research scientist at OpenAI ChatGPT team. He has worked on various aspects of Large Language Models: pre-training, instruction fine-tuning, reinforcement learning with human feedback, reasoning, multilinguality, parallelism strategies, etc. Some of the notable work includes scaling Flan paper (Flan-T5, Flan-PaLM) and T5X, the training framework used to train the PaLM language model. Before OpenAI, he was at Google Brain and before that he received a PhD from MIT.

More about the course can be found here: https://web.stanford.edu/class/cs25/

View the entire CS25 Transformers United playlist:    • Stanford CS25 - Transformers United  

Stanford CS25: V4 I Hyung Won Chung of OpenAI

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Stanford CS25: V5 I Overview of Transformers

Stanford CS25: V5 I Overview of Transformers

MIT 6.S191 (2024): Глубокое генеративное моделирование

MIT 6.S191 (2024): Глубокое генеративное моделирование

Andrej Karpathy: Software Is Changing (Again)

Andrej Karpathy: Software Is Changing (Again)

Вебинар Стэнфорда: большие языковые модели вызывают ажиотаж, но составные системы — это будущее ИИ

Вебинар Стэнфорда: большие языковые модели вызывают ажиотаж, но составные системы — это будущее ИИ

OpenAI’s Sam Altman Talks ChatGPT, AI Agents and Superintelligence — Live at TED2025

OpenAI’s Sam Altman Talks ChatGPT, AI Agents and Superintelligence — Live at TED2025

NUS120 Distinguished Speaker Series | Professor Yann LeCun

NUS120 Distinguished Speaker Series | Professor Yann LeCun

Encoder-Only Transformers (like BERT) for RAG, Clearly Explained!!!

Encoder-Only Transformers (like BERT) for RAG, Clearly Explained!!!

Stanford CS25: V5 I Transformers for Video Generation, Andrew Brown of Meta

Stanford CS25: V5 I Transformers for Video Generation, Andrew Brown of Meta

Stanford CS229 I Machine Learning I Building Large Language Models (LLMs)

Stanford CS229 I Machine Learning I Building Large Language Models (LLMs)

Making AI accessible with Andrej Karpathy and Stephanie Zhan

Making AI accessible with Andrej Karpathy and Stephanie Zhan

Stanford CS25: V4 I Behind the Scenes of LLM Pre-training: StarCoder Use Case

Stanford CS25: V4 I Behind the Scenes of LLM Pre-training: StarCoder Use Case

Hyung Won Chung: Shaping the Future of AI from the History of Transformer

Hyung Won Chung: Shaping the Future of AI from the History of Transformer

Stanford CS236: Deep Generative Models I 2023 I Lecture 2 - Background

Stanford CS236: Deep Generative Models I 2023 I Lecture 2 - Background

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Притчи о силе планирования в ИИ: от покера к дипломатии: Ноам Браун (OpenAI)

Притчи о силе планирования в ИИ: от покера к дипломатии: Ноам Браун (OpenAI)

Official PyTorch Documentary: Powering the AI Revolution

Official PyTorch Documentary: Powering the AI Revolution

Stanford CS25: V4 I Aligning Open Language Models

Stanford CS25: V4 I Aligning Open Language Models

Stanford CS25: V4 I Overview of Transformers

Stanford CS25: V4 I Overview of Transformers

[Full Workshop] Reinforcement Learning, Kernels, Reasoning, Quantization & Agents — Daniel Han

[Full Workshop] Reinforcement Learning, Kernels, Reasoning, Quantization & Agents — Daniel Han

Generative AI Course for Beginners | Gen AI Full Course | Gen AI Tutorial for Beginners | Edureka

Generative AI Course for Beginners | Gen AI Full Course | Gen AI Tutorial for Beginners | Edureka

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]