Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Marco Gorelli - How Narwhals brings Polars, DuckDB, PyArrow, & pandas together | PyData London 25

Автор: PyData

Загружено: 2025-07-02

Просмотров: 4568

Описание:

www.pydata.org

Polars, DuckDB, PySpark, PyArrow, pandas, cuDF: how Narwhals has brought them all together!

Suppose you want to write a data science tool to do feature engineering. Your experience may go like this:- Expectation: you can focus on state-of-the art techniques for feature engineering.- Reality: you keep having to make you codebase more complex because a new dataframe library has come out and users are demanding support for it.
Or rather, it might have gone like that in the pre-Narwhals era. Because now, you can focus on solving the problems which your tool set out to do, and let Narwhals handle the subtle differences between different kinds of dataframe inputs!

PyData is an educational program of NumFOCUS, a 501(c)3 non-profit organization in the United States. PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The global PyData network promotes discussion of best practices, new approaches, and emerging technologies for data management, processing, analytics, and visualization. PyData communities approach data science using many languages, including (but not limited to) Python, Julia, and R.

PyData conferences aim to be accessible and community-driven, with novice to advanced level presentations. PyData tutorials and talks bring attendees the latest project features along with cutting-edge use cases.

Marco Gorelli - How Narwhals brings Polars, DuckDB, PyArrow, & pandas together | PyData London 25

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Marco Gorelli - Understanding Polars Expressions when you're used to pandas | PyData Amsterdam 2024

Marco Gorelli - Understanding Polars Expressions when you're used to pandas | PyData Amsterdam 2024

Thomas Bierhance: Polars - make the switch to lightning-fast dataframes

Thomas Bierhance: Polars - make the switch to lightning-fast dataframes

Introduction to Scaling Analytics Using DuckDB with Python

Introduction to Scaling Analytics Using DuckDB with Python

Революция PyArrow в Pandas — Реувен М. Лернер

Революция PyArrow в Pandas — Реувен М. Лернер

Программируем с ИИ в VS Code - БЕСПЛАТНО! Сможет каждый!

Программируем с ИИ в VS Code - БЕСПЛАТНО! Сможет каждый!

Ritchie Vink - Polars 1.0 and beyond | PyData Amsterdam 2024

Ritchie Vink - Polars 1.0 and beyond | PyData Amsterdam 2024

Почему ведущие инженеры не используют Pandas! (Обзор Polar и Spark)

Почему ведущие инженеры не используют Pandas! (Обзор Polar и Spark)

Polars and Time Series: what it can do, and how to overcome any limitation

Polars and Time Series: what it can do, and how to overcome any limitation

Как реорганизовать невероятно сложную бизнес-логику (шаг за шагом)

Как реорганизовать невероятно сложную бизнес-логику (шаг за шагом)

i think this is what AI should look like

i think this is what AI should look like

Practical Applications for DuckDB (with Simon Aubury & Ned Letcher)

Practical Applications for DuckDB (with Simon Aubury & Ned Letcher)

Gábor Szárnyas - DuckDB: The Power of a Data Warehouse in your Python Process

Gábor Szárnyas - DuckDB: The Power of a Data Warehouse in your Python Process

885: Python Polars: The Definitive Guide — with Jeroen Janssens and Thijs Nieuwdorp

885: Python Polars: The Definitive Guide — with Jeroen Janssens and Thijs Nieuwdorp

DuckDB для разработчиков Python: 6 причин, по которым он лучше DataFrames

DuckDB для разработчиков Python: 6 причин, по которым он лучше DataFrames

Modernising Geospatial Data: From Shapefiles to Parquet & DuckDB

Modernising Geospatial Data: From Shapefiles to Parquet & DuckDB

Andrej Karpathy: Software Is Changing (Again)

Andrej Karpathy: Software Is Changing (Again)

Juan Luis- Expressive and fast dataframes in Python with polars | PyData NYC 2022

Juan Luis- Expressive and fast dataframes in Python with polars | PyData NYC 2022

SOLID: Writing Better Python Without Overengineering

SOLID: Writing Better Python Without Overengineering

Python 3.14: The NEW T-strings are Awesome

Python 3.14: The NEW T-strings are Awesome

Polars: The Next Big Python Data Science Library... written in RUST?

Polars: The Next Big Python Data Science Library... written in RUST?

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]