Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Katherine A. Keith: Proximal Causal Inference with Text Data

Автор: Online Causal Inference Seminar

Загружено: 2025-03-11

Просмотров: 654

Описание:

Subscribe to the channel to get notified when we release a new video.
Like the video to tell YouTube that you want more content like this on your feed.
See our website for future seminars: https://sites.google.com/view/ocis/home
Tuesday, Mar 11, 2025: Katherine A. Keith (Williams College)
Title: Proximal Causal Inference with Text Data
Discussant: Naoki Egami (Columbia University)
Abstract: Recent text-based causal methods attempt to mitigate confounding bias by estimating proxies of confounding variables that are partially or imperfectly measured from unstructured text data. These approaches, however, assume analysts have supervised labels of the confounders given text for a subset of instances, a constraint that is sometimes infeasible due to data privacy or annotation costs. In this work, we address settings in which an important confounding variable is completely unobserved. We propose a new causal inference method that uses two instances of pre-treatment text data, infers two proxies using two zero-shot models on the separate instances, and applies these proxies in the proximal g-formula. We prove, under certain assumptions about the instances of text and accuracy of the zero-shot predictions, that our method of inferring text-based proxies satisfies identification conditions of the proximal g-formula while other seemingly reasonable proposals do not. To address untestable assumptions associated with our method and the proximal g-formula, we further propose an odds ratio falsification heuristic that flags when to proceed with downstream effect estimation using the inferred proxies. We evaluate our method in synthetic and semi-synthetic settings—the latter with real-world clinical notes from MIMIC-III and open large language models for zero-shot prediction—and find that our method produces estimates with low bias. We believe that this text-based design of proxies allows for the use of proximal causal inference in a wider range of scenarios, particularly those for which obtaining suitable proxies from structured data is difficult.

Katherine A. Keith: Proximal Causal Inference with Text Data

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

An introduction to Causal Inference with Python – making accurate estimates of cause and effect from

An introduction to Causal Inference with Python – making accurate estimates of cause and effect from

Introduction To Causal Inference And Directed Acyclic Graphs

Introduction To Causal Inference And Directed Acyclic Graphs

Nathan Kallus: Learning Surrogate Indices from Historical A/Bs Adversarial ML for Debiased Inference

Nathan Kallus: Learning Surrogate Indices from Historical A/Bs Adversarial ML for Debiased Inference

Guido Imbens: Identification of nonparametric factor models for average treatment effects

Guido Imbens: Identification of nonparametric factor models for average treatment effects

Causal Inference in R: The Whole Game - Malcolm Barrett

Causal Inference in R: The Whole Game - Malcolm Barrett

Bayesian Inference is Just Counting

Bayesian Inference is Just Counting

Linbo Wang: The synthetic instrument: From sparse association to sparse causation

Linbo Wang: The synthetic instrument: From sparse association to sparse causation

Усилители класса D против High End

Усилители класса D против High End

Regression and Matching | Causal Inference in Data Science Part 1

Regression and Matching | Causal Inference in Data Science Part 1

Jakob Runge: Causal Inference on Time Series Data with the Tigramite Package

Jakob Runge: Causal Inference on Time Series Data with the Tigramite Package

Sam Pimentel: Design Sensitivity and Its Implications for Weighted Observational Studies

Sam Pimentel: Design Sensitivity and Its Implications for Weighted Observational Studies

Причинно-следственные выводы с помощью машинного обучения — ОБЪЯСНЕНЫ!

Причинно-следственные выводы с помощью машинного обучения — ОБЪЯСНЕНЫ!

Интервью по проектированию системы Google: Design Spotify (с бывшим менеджером по маркетингу Google)

Интервью по проектированию системы Google: Design Spotify (с бывшим менеджером по маркетингу Google)

Structural Equation Modeling: what is it and what can we use it for? (part 1 of 6)

Structural Equation Modeling: what is it and what can we use it for? (part 1 of 6)

Young researchers' seminar: Drago Plečko and Daiqi Gao

Young researchers' seminar: Drago Plečko and Daiqi Gao

An Introduction to Negative Control & Proximal Causal Learning | Xu Shi, PhD | Jan 28, 2022

An Introduction to Negative Control & Proximal Causal Learning | Xu Shi, PhD | Jan 28, 2022

Selection bias: The elephant in the room - Lucas Bernardi

Selection bias: The elephant in the room - Lucas Bernardi

2021, Methods Lecture, Alberto Abadie

2021, Methods Lecture, Alberto Abadie "Synthetic Controls: Methods and Practice"

Vasilis Syrgkanis: Detecting clinician implicit biases in diagnoses using proximal causal inference

Vasilis Syrgkanis: Detecting clinician implicit biases in diagnoses using proximal causal inference

15. Causal Inference, Part 2

15. Causal Inference, Part 2

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]