Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

DDPS | Physics-enhanced Gaussian Processes for Learning of Electromechanical Systems |Thomas Beckers

Автор: Inside Livermore Lab

Загружено: 2023-07-24

Просмотров: 2135

Описание:

Data-driven approaches achieve remarkable results for modeling nonlinear electromechanical systems based on collected data. However, these models often neglect basic physical principles which determine the behavior of any real-world system. This omission is unfavorable in two ways: The models are not as data-efficient as they could be by incorporating physical prior knowledge, and the model itself might not be physically correct.

In this talk, I will present our results on physics-enhanced Gaussian processes for learning of dynamical system with a focus on the class of electromechanical systems. First, I will propose Gaussian Process Port-Hamiltonian systems (GP-PHS) as a physics-informed, nonparametric Bayesian learning approach with uncertainty quantification. In contrast to many physics-informed techniques that impose physics by penalty, the proposed data-driven model is physically correct by design. The Bayesian nature of GP-PHS uses collected data to form a distribution over all possible Port-Hamiltonian systems instead of a single point estimate. Second, I will present our recent results on physics-enhanced variational autoencoders that make use of a physically enhanced Gaussian process prior on the latent dynamics to improve its efficiency and to allow physically correct predictions. The physical prior knowledge expressed as a linear dynamical system is here reflected by the Green's function and included in the kernel function of the Gaussian process. The benefits of the proposed approach are highlighted in a simulation with an oscillating particle.

Bio: Thomas Beckers is an Assistant Professor of Computer Science and the Institute for Software Integrated Systems at Vanderbilt University. Before joining Vanderbilt, he was a postdoctoral researcher at the Department of Electrical and Systems Engineering, University of Pennsylvania, where he was member of the GRASP Lab, PRECISE & ASSET Center. In 2020, he earned his doctorate in Electrical Engineering at the Technical University of Munich (TUM), Germany. He received the B.Sc. and M.Sc. degree in Electrical Engineering in 2010 and 2013, respectively, from the Technical University of Braunschweig, Germany. In 2018, he was a visiting researcher at the University of California, Berkeley. He is a DAAD AInet fellow and was awarded with the Rhode & Schwarz Outstanding Dissertation prize. His research interests include physics-enhanced learning, nonparametric models, and safe learning-based control (www.tbeckers.com).

LLNL-VIDEO-851990

DDPS | Physics-enhanced Gaussian Processes for Learning of Electromechanical Systems |Thomas Beckers

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

DDPS | Data-driven multi-scale simulations for materials-by-design of energetic materials |Udaykumar

DDPS | Data-driven multi-scale simulations for materials-by-design of energetic materials |Udaykumar

ML Tutorial: Gaussian Processes (Richard Turner)

ML Tutorial: Gaussian Processes (Richard Turner)

DDPS |

DDPS | "When and why physics-informed neural networks fail to train" by Paris Perdikaris

Гауссовские процессы

Гауссовские процессы

Все, что вам нужно знать о теории управления

Все, что вам нужно знать о теории управления

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

Как производятся микрочипы? 🖥️🛠️ Этапы производства процессоров

Как производятся микрочипы? 🖥️🛠️ Этапы производства процессоров

DDPS | Defining Foundation Models for Computational Science: Toward Clarity and Rigor

DDPS | Defining Foundation Models for Computational Science: Toward Clarity and Rigor

Удар по Киеву: последствия, Кремль срывает встречу в США, НАБУ у «Слуги народа». Галлямов, Крутихин

Удар по Киеву: последствия, Кремль срывает встречу в США, НАБУ у «Слуги народа». Галлямов, Крутихин

Introduction to Gaussian processes

Introduction to Gaussian processes

FEM@LLNL | Toward Information Geometric Mechanics

FEM@LLNL | Toward Information Geometric Mechanics

Понимание вибрации и резонанса

Понимание вибрации и резонанса

Как сжимаются изображения? [46 МБ ↘↘ 4,07 МБ] JPEG в деталях

Как сжимаются изображения? [46 МБ ↘↘ 4,07 МБ] JPEG в деталях

Energy Storage, But Make It Complicated

Energy Storage, But Make It Complicated

Вейвлеты: математический микроскоп

Вейвлеты: математический микроскоп

Gaussian Processes: Their Power and Limitations, Dr. Vinesh Maguire-Rajpaul (Cambridge Univ.)

Gaussian Processes: Their Power and Limitations, Dr. Vinesh Maguire-Rajpaul (Cambridge Univ.)

Как ASML ускоряет производство чипов благодаря своей новой высокопроизводительной машине стоимост...

Как ASML ускоряет производство чипов благодаря своей новой высокопроизводительной машине стоимост...

Физически-информированные нейронные сети (PINN) [Машинное обучение с учетом физики]

Физически-информированные нейронные сети (PINN) [Машинное обучение с учетом физики]

Safe Learning-based Control Using Gaussian Processes @ IFAC2020

Safe Learning-based Control Using Gaussian Processes @ IFAC2020

Управление поведением LLM без тонкой настройки

Управление поведением LLM без тонкой настройки

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]