Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

258 - Semi-supervised learning with GANs

Автор: DigitalSreeni

Загружено: 2022-02-23

Просмотров: 18471

Описание:

Semi-supervised learning with generative adversarial networks.

Semi-supervised refers to the training process where the model gets trained only on a few labeled images but the data set contains a lot more unlabeled images. This can be useful in situations where you have a humongous data set but only partially labeled.

In regular GAN the discriminator is trained in an unsupervised manner, where it predicts whether the image is real or fake (binary classification). In SGAN, in addition to unsupervised, the discriminator gets trained in a supervised manner on class labels for real images (multiclass classification).

In essence, the unsupervised mode trains the discriminator to learn features and the supervised mode trains on corresponding classes (labels). The GAN
can be trained using only a handful of labeled examples.

In a standard GAN our focus is on training a generator that we want to use to generate fake images. In SGAN, our goal is to train the discriminator to be an excellent classifier using only a few labeled images. We can still use the generator to generate fake images but our focus is on the discriminator.

Why do we want to follow this path is CNNs can easily classify images?
Apparently, this approach achieves better accuracy for limited labeled data compared to CNNs.
(https://arxiv.org/abs/1606.01583)

Another useful resource: https://arxiv.org/pdf/1606.03498.pdf​

258 - Semi-supervised learning with GANs

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

259 - Semi-supervised learning with GANs - in keras

259 - Semi-supervised learning with GANs - in keras

247 - Conditional GANs and their applications

247 - Conditional GANs and their applications

What is Semi-Supervised Learning?

What is Semi-Supervised Learning?

Поймите математику и теорию GAN примерно за 10 минут

Поймите математику и теорию GAN примерно за 10 минут

255 - Single image super resolution​ using SRGAN

255 - Single image super resolution​ using SRGAN

260 - Identifying anomaly images using convolutional autoencoders

260 - Identifying anomaly images using convolutional autoencoders

210 - Multiclass U-Net using VGG, ResNet, and Inception as backbones

210 - Multiclass U-Net using VGG, ResNet, and Inception as backbones

Почему «Трансформеры» заменяют CNN?

Почему «Трансформеры» заменяют CNN?

MIT 6.S191 (2023): Глубокое генеративное моделирование

MIT 6.S191 (2023): Глубокое генеративное моделирование

Предел развития НЕЙРОСЕТЕЙ

Предел развития НЕЙРОСЕТЕЙ

Как сжимаются изображения? [46 МБ ↘↘ 4,07 МБ] JPEG в деталях

Как сжимаются изображения? [46 МБ ↘↘ 4,07 МБ] JPEG в деталях

Christmas Jazz 2026 🎄 Relaxing Coffee Jazz Music & Christmas Bossa Nova Piano for Good Mood

Christmas Jazz 2026 🎄 Relaxing Coffee Jazz Music & Christmas Bossa Nova Piano for Good Mood

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

But what is a convolution?

But what is a convolution?

L9 Semi-Supervised Learning and Unsupervised Distribution Alignment -- CS294-158-SP20 UC Berkeley

L9 Semi-Supervised Learning and Unsupervised Distribution Alignment -- CS294-158-SP20 UC Berkeley

Внимание — это все, что вам нужно

Внимание — это все, что вам нужно

179 - Variational autoencoders using keras on MNIST data

179 - Variational autoencoders using keras on MNIST data

DINO in PyTorch

DINO in PyTorch

Tips Tricks 20 - Understanding transfer learning for different size and channel inputs

Tips Tricks 20 - Understanding transfer learning for different size and channel inputs

126 - Generative Adversarial Networks (GAN) using keras in python

126 - Generative Adversarial Networks (GAN) using keras in python

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]