Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

PyData Tel Aviv Meetup: Introduction to Causal Inference in Time Series Data - Shay Palachy

Автор: PyData

Загружено: 2020-01-21

Просмотров: 11850

Описание:

PyData Tel Aviv Meetup #28
2 January 2020
Sponsored and Hosted by PayPal
https://www.meetup.com/PyData-Tel-Aviv/

In this talk I will give concise review of the major approaches found in academic literature and online resources for the purpose of inferring and detecting causality in time series data.
I will start with motivation, explaining why detecting causality is important, the many different use cases it has, and why it cannot be done intuitively (correlation does not imply causation). I will then briefly go over the main theoretical approaches suggested over the years to define causality, highlighting the way they differ and the impact they have. Moving on, I will present the prominent approaches to infer causality, born of the previous definitions, focusing on limitations and pitfalls and almost always referring to Python or R implementations of each approach. Finally, I will give a short guide to which approach to choose, depending on your data, research question, possible assumptions and KPIs.

About the speaker:
I ❤️ learning, data science-ing and making open source Python. I've founded the NLPH initiative and co-founded the ML-centric hackathon DataHack and DataTalks meetup series. I work as a data science consultant.

www.pydata.org

PyData is an educational program of NumFOCUS, a 501(c)3 non-profit organization in the United States. PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The global PyData network promotes discussion of best practices, new approaches, and emerging technologies for data management, processing, analytics, and visualization. PyData communities approach data science using many languages, including (but not limited to) Python, Julia, and R.

Find a PyData chapter near you: meetup.com/pro/pydata 00:00 Welcome!
00:10 Help us add time stamps or captions to this video! See the description for details.

Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: https://github.com/numfocus/YouTubeVi...

PyData Tel Aviv Meetup: Introduction to Causal Inference in Time Series Data - Shay Palachy

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Kishan Manani - Feature Engineering for Time Series Forecasting | PyData London 2022

Kishan Manani - Feature Engineering for Time Series Forecasting | PyData London 2022

14. Causal Inference, Part 1

14. Causal Inference, Part 1

What is causal inference, and why should data scientists know? by Ludvig Hult

What is causal inference, and why should data scientists know? by Ludvig Hult

Chris Fonnesbeck - Bayesian Time Series | PyData London 25

Chris Fonnesbeck - Bayesian Time Series | PyData London 25

Nick Jones, Sam Barrows: Uber's Synthetic Control | PyData Amsterdam 2019

Nick Jones, Sam Barrows: Uber's Synthetic Control | PyData Amsterdam 2019

Причинно-следственные выводы с помощью машинного обучения — ОБЪЯСНЕНЫ!

Причинно-следственные выводы с помощью машинного обучения — ОБЪЯСНЕНЫ!

Vincent D. Warmerdam: Untitled12.ipynb | PyData Eindhoven 2019

Vincent D. Warmerdam: Untitled12.ipynb | PyData Eindhoven 2019

Что я реально делаю как Data Scientist в США за $410.000/год

Что я реально делаю как Data Scientist в США за $410.000/год

Python OOP Tutorial 1: Classes and Instances

Python OOP Tutorial 1: Classes and Instances

Demo: Enabling end-to-end causal inference at scale

Demo: Enabling end-to-end causal inference at scale

Машинное обучение. Прогнозирование временных рядов. К.В. Воронцов, Школа анализа данных, Яндекс.

Машинное обучение. Прогнозирование временных рядов. К.В. Воронцов, Школа анализа данных, Яндекс.

Detrending and deseasonalizing data with fourier series

Detrending and deseasonalizing data with fourier series

Roni Kobrosly: Introduction to Causal Inference | PDNYC 2022

Roni Kobrosly: Introduction to Causal Inference | PDNYC 2022

Full Tutorial: Causal Machine Learning in Python (Feat. Uber's CausalML)

Full Tutorial: Causal Machine Learning in Python (Feat. Uber's CausalML)

Feature Engineering for Time Series Forecasting - Kishan Manani

Feature Engineering for Time Series Forecasting - Kishan Manani

Aileen Nielsen - Irregular time series and how to whip them

Aileen Nielsen - Irregular time series and how to whip them

Keynote: Judea Pearl - The New Science of Cause and Effect

Keynote: Judea Pearl - The New Science of Cause and Effect

Foundations of causal inference and its impacts on machine learning webinar

Foundations of causal inference and its impacts on machine learning webinar

Granger causality (prediction)

Granger causality (prediction)

Two Effective Algorithms for Time Series Forecasting

Two Effective Algorithms for Time Series Forecasting

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com