Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Devavrat Shah - “On counterfactual inference with unobserved confounding via exponential family”

Автор: UWMadison SILO Seminar

Загружено: 2025-03-12

Просмотров: 63

Описание:

Time: Wednesday, Mar 12th, 12:30-1:30 pm

Speaker: Devavrat Shah

Abstract: We are interested in the problem of unit-level counterfactual inference in the presence of unobserved confounders owing to the increasing importance of personalized decision-making in many domains: consider a recommender system interacting with a user over time where each user is provided recommendations based on observed demographics, prior engagement levels as well as certain unobserved factors. We model the underlying joint distribution through an exponential family. This reduces the task of unit-level counterfactual inference to simultaneously learning a collection of distributions of a given exponential family with different unknown parameters with single observation per distribution. We discuss a computationally efficient method for learning all of these parameters with estimation error scaling linearly with the metric entropy of the space of unknown parameters – if the parameters are s-sparse linear combination of k known vectors in p dimension, the error scales as O(s log k/p). En route, we derive sufficient conditions for compactly supported distributions to satisfy the logarithmic Sobolev inequality.

Based on a joint work with Raaz Dwivedi (Cornell), Abhin Shah (MIT) and Greg Wornell (MIT).

Main paper: https://arxiv.org/abs/2211.08209
Related paper: https://arxiv.org/pdf/2309.06413

Biography:

Devavrat Shah is Andrew (1956) and Erna Viterbi Professor of Electrical Engineering and Computer Science at MIT where he has been teaching since 2005. He was the faculty director of Deshpande Center for Tech Innovation and the founding director of the Statistics and Data Science Center at MIT. His current research interests include algorithms for causal inference, social data processing and stochastic networks. He is a distinguished alumni of his alma mater IIT Bombay. His work has been recognized through career prizes 2008 ACM Sigmetrics Rising Star, 2010 INFORMS Erlang Prize and 2024 INFORMS Markov Lecturer; paper prizes at IEEE Infocom, ACM Sigmetrics, NeurIPS, INFORMS Applied Probability Society, INFORM Management Science and Operations Management; INFORMS George B Dantzig thesis prize and test of time awards at ACM Sigmetrics. In 2013, he co-founded the machine learning start-up Celect (part of Nike) which helps retailers optimize inventory using accurate demand forecasting. In 2019, he co-founded Ikigai Labs with the mission of bringing AI to Enterprises.

Devavrat Shah - “On counterfactual inference with unobserved confounding via exponential family”

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Arash Amini -

Arash Amini - "Polynomial Graph Neural Networks: Theoretical Limits and Graph Noise Impact"

Dimitris Papailiopoulos -

Dimitris Papailiopoulos - "Self-Improving Transformers: Overcoming Length Generalization Challenges"

Peter Frazier -

Peter Frazier - "Bayesian Preference Exploration: Making Optimization Accessible to Non-Experts"

Kaiqing Zhang - “Towards Principled AI-Agents with Decentralized and Asymmetric Information”

Kaiqing Zhang - “Towards Principled AI-Agents with Decentralized and Asymmetric Information”

Max Hutt: Non-invertible Symmetries of 2d Non-Linear Sigma Models

Max Hutt: Non-invertible Symmetries of 2d Non-Linear Sigma Models

An introduction to Causal Inference with Python – making accurate estimates of cause and effect from

An introduction to Causal Inference with Python – making accurate estimates of cause and effect from

Serena Wang -

Serena Wang - "Relying on the Metrics of Evaluated Agents"

Jeff Schneider -

Jeff Schneider - "Reinforcement Learning and Bayesian Optimization for Nuclear Fusion"

Поправки в Налоговый Кодекс приняли. Разбираем изменения

Поправки в Налоговый Кодекс приняли. Разбираем изменения

Lec 25: Behavioral Economics

Lec 25: Behavioral Economics

Understanding LLM Inference | NVIDIA Experts Deconstruct How AI Works

Understanding LLM Inference | NVIDIA Experts Deconstruct How AI Works

Difference-in-differences | Synthetic Control | Causal Inference in Data Science Part 2

Difference-in-differences | Synthetic Control | Causal Inference in Data Science Part 2

4 часа Шопена для обучения, концентрации и релаксации

4 часа Шопена для обучения, концентрации и релаксации

Tutorial | Bayesian causal inference: A critical review and tutorial (Standard Format)

Tutorial | Bayesian causal inference: A critical review and tutorial (Standard Format)

Во всем виноват любимый Зеленского?

Во всем виноват любимый Зеленского?

MIT 6.S191: Reinforcement Learning

MIT 6.S191: Reinforcement Learning

Запомните! Все болезни из за ЗАСТОЕВ в лимфе! Как разогнать лимфу? 5 убийц вашей лимфы. Е. Козлов

Запомните! Все болезни из за ЗАСТОЕВ в лимфе! Как разогнать лимфу? 5 убийц вашей лимфы. Е. Козлов

Searching for architectures and BERT moments in specialized AI applications

Searching for architectures and BERT moments in specialized AI applications

Ben Grimmer -

Ben Grimmer - "Optimizing Optimization Methods, To and Beyond Minimax Optimality"

Trevor Campbell -

Trevor Campbell - "Automating Statistical Inference for Modern Probabilistic Models

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]